NMDA and AMPA receptors contribute to the maintenance of substance P-induced thermal hyperalgesia. 2010

Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.

It is well known that intrathecal administration of substance P (SP) induces thermal hyperalgesia, but the mechanisms underlying the maintenance of SP-induced thermal hyperalgesia remain to be clarified. Thus, to clarify the receptors involved in the maintenance of SP-induced thermal hyperalgesia, the effect of administering SP or glutamate receptor agonists, NMDA or AMPA, under SP-induced thermal hyperalgesia was investigated. Also, the effect of pretreatment with protein kinase inhibitors on scratching behavior by NMDA or AMPA under SP-induced thermal hyperalgesia was examined. Under SP-induced thermal hyperalgesia, the number of scratchings following SP administration was time-dependently suppressed, whereas the number of scratchings after NMDA or AMPA administration was markedly enhanced and SP-induced thermal hyperalgesia was attenuated by pretreatment with NMDA or AMPA receptor antagonist. Furthermore, pretreatment with kinase inhibitors significantly attenuated the enhancement of scratching behavior by NMDA or AMPA under SP-induced thermal hyperalgesia. These findings indicate that SP-induced thermal hyperalgesia may be maintained through the enhanced responsiveness of NMDA or AMPA receptors, but not the receptor of SP, mediated by kinases.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
June 1994, Pain,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
February 2006, Behavioural brain research,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
October 2014, Molecular pain,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
November 2014, The Journal of physiology,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
March 1999, Neuroscience,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
September 2001, Acta pharmacologica Sinica,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
September 2003, Journal of neurophysiology,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
December 1998, Neuroreport,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
September 1996, Pain,
Tomohiro Nakayama, and Rumi Naono, and Tetsuya Ikeda, and Toshikazu Nishimori
March 2004, Neuroscience letters,
Copied contents to your clipboard!