Stromal assemblies containing collagen types IV and VI and fibronectin in the developing embryonic avian cornea. 1991

J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111.

The morphogenesis of type IV collagen-containing structures in the stromal matrix of the developing avian cornea was investigated using immunofluorescence and immunoelectron microscopic histochemistry. Two forms of type IV collagen-containing structures were seen; these differed in their probable origin, structure, molecular composition, and developmental fate. The major form of stromal type IV collagen-containing material, termed "strings," was observed only after swelling of the primary stroma and the onset of mesenchymal invasion. These strings are presumed to be products of the stromal cells. In immunofluorescence histochemistry they appeared as linear segments of type IV collagen-specific immunoreactivity. In immunoelectron microscopy, they appeared initially as electron-dense sausages of variable length and orientation. They frequently were associated with cell surfaces and, in fortuitous sections, appeared to connect adjacent cells. The strings also contained type VI collagen and fibronectin, but very little, if any, of the basement membrane components laminin and heparin sulfate proteoglycan (HSPG). As the stroma continued to expand in thickness, more of these structures were observed in a radial orientation, becoming quite long and less tortuous. Later in development, as stromal condensation proceeded, they disappeared. We suggest that the strings function to stabilize the stromal matrix, and perhaps to limit the rate and/or extent of stromal expansion, during a phase of rapid swelling and matrix deposition. The other form of type IV collagen-containing stromal material appeared as irregularly shaped plaques of basement membrane-like material identical to those previously described in mature corneas. These are likely derived from the corneal endothelial cells. They contained other basement membrane-associated components (laminin, HSPG) and fibronectin, but not type VI collagen. This material persists in mature corneas as sparse irregular stromal plaques and as matrix in the interface between Descemet's membrane and the corneal stroma.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
January 1985, Annals of the New York Academy of Sciences,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
June 1990, Investigative ophthalmology & visual science,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
January 1992, Archives of dermatological research,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
September 2008, Acta ophthalmologica,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
March 1984, Current eye research,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
January 1990, Virchows Archiv. A, Pathological anatomy and histopathology,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
July 1987, Roux's archives of developmental biology : the official organ of the EDBO,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
January 1995, Developmental dynamics : an official publication of the American Association of Anatomists,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
October 1986, The Journal of cell biology,
J M Fitch, and D E Birk, and C Linsenmayer, and T F Linsenmayer
May 1984, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!