Dynamics of H2O2 availability to ARPE-19 cultures in models of oxidative stress. 2010

Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
Department of Biophysics, Jagiellonian University, 30-387 Kraków, Poland.

Oxidative injury to cells such as the retinal pigment epithelium (RPE) is often modeled using H(2)O(2)-treated cultures, but H(2)O(2) concentrations are not sustained in culture medium. Here medium levels of H(2)O(2) and cytotoxicity were analyzed in ARPE-19 cultures after H(2)O(2) delivery as a single pulse or with continuous generation using glucose oxidase (GOx). When added as a pulse, H(2)O(2) is rapidly depleted (within 2 h); cytotoxicity at 24 h, determined by the MTT assay for mitochondrial function, is unaffected by medium replacement at 2 h. Continuous generation of H(2)O(2) produces complex outcomes. At low GOx concentrations, H(2)O(2) levels are sustained by conditions under which generation matches depletion, but when GOx concentrations produce cytotoxic levels of H(2)O(2), oxidant depletion accelerates. Acceleration results partly from the release of contents from oxidant-damaged cells as indicated by testing depletion after controlled membrane disruption with detergents. Cytotoxicity analyses show that cells can tolerate short exposure to high H(2)O(2) doses delivered as a pulse but are susceptible to lower chronic doses. The results provide broadly applicable guidance for using GOx to produce sustained H(2)O(2) levels in cultured cells. This approach will be specifically useful for modeling chronic stress relevant to RPE aging and have a wider value for studying cellular effects of sublethal oxidant injury and for evaluating antioxidants that may protect significantly against mild but not lethal stress.

UI MeSH Term Description Entries
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005949 Glucose Oxidase An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4. Microcid,Oxidase, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D055213 Retinal Pigment Epithelium The single layer of pigment-containing epithelial cells in the RETINA, situated closely to the tips (outer segments) of the RETINAL PHOTORECEPTOR CELLS. These epithelial cells are macroglia that perform essential functions for the photoreceptor cells, such as in nutrient transport, phagocytosis of the shed photoreceptor membranes, and ensuring retinal attachment. Epithelium, Retinal Pigment,Pigment Epithelium, Retinal
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
January 2006, Free radical biology & medicine,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
January 2023, Experimental eye research,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
March 2020, International journal of molecular sciences,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
November 2021, Molecular medicine reports,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
January 2020, Oxidative medicine and cellular longevity,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
May 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
June 2018, Cutaneous and ocular toxicology,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
September 2016, Acta ophthalmologica,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
February 2019, Journal of cellular biochemistry,
Patrycja Kaczara, and Tadeusz Sarna, and Janice M Burke
October 2001, Investigative ophthalmology & visual science,
Copied contents to your clipboard!