Correlation between ribonucleoside-diphosphate reductase and three replication proteins in Escherichia coli. 2010

M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, E06080 Badajoz, Spain.

BACKGROUND There has long been evidence supporting the idea that RNR and the dNTP-synthesizing complex must be closely linked to the replication complex or replisome. We contributed to this body of evidence in proposing the hypothesis of the replication hyperstructure. A recently published work called this postulate into question, reporting that NrdB is evenly distributed throughout the cytoplasm. Consequently we were interested in the localization of RNR protein and its relationship with other replication proteins. RESULTS We tagged NrdB protein with 3xFLAG epitope and detected its subcellular location by immunofluorescence microscopy. We found that this protein is located in nucleoid-associated clusters, that the number of foci correlates with the number of replication forks at any cell age, and that after the replication process ends the number of cells containing NrdB foci decreases.We show that the number of NrdB foci is very similar to the number of SeqA, DnaB, and DnaX foci, both in the whole culture and in different cell cycle periods. In addition, interfoci distances between NrdB and three replication proteins are similar to the distances between two replication protein foci. CONCLUSIONS NrdB is present in nucleoid-associated clusters during the replication period. These clusters disappear after replication ends. The number of these clusters is closely related to the number of replication forks and the number of three replication protein clusters in any cell cycle period. Therefore we conclude that NrdB protein, and most likely RNR protein, is closely linked to the replication proteins or replisome at the replication fork. These results clearly support the replication hyperstructure model.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012262 Ribonucleoside Diphosphate Reductase An enzyme of the oxidoreductase class that catalyzes the formation of 2'-deoxyribonucleotides from the corresponding ribonucleotides using NADPH as the ultimate electron donor. The deoxyribonucleoside diphosphates are used in DNA synthesis. (From Dorland, 27th ed) EC 1.17.4.1. UDP Reductase,Diphosphate Reductase, Ribonucleoside,Reductase, Ribonucleoside Diphosphate,Reductase, UDP
D053488 DnaB Helicases A family of DNA helicases that participate in DNA REPLICATION. They assemble into hexameric rings with a central channel and unwind DNA processively in the 5' to 3' direction. DnaB helicases are considered the primary replicative helicases for most prokaryotic organisms. DnaB Helicase,Helicase, DnaB,Helicases, DnaB

Related Publications

M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
January 1978, Methods in enzymology,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
May 2007, Journal of bacteriology,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
January 2002, Molecular microbiology,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
July 1973, The Journal of biological chemistry,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
June 1983, Journal of bacteriology,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
January 1992, Mutagenesis,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
December 1983, Journal of bacteriology,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
July 1976, Proceedings of the National Academy of Sciences of the United States of America,
M Antonia Sánchez-Romero, and Felipe Molina, and Alfonso Jiménez-Sánchez
May 1977, Journal of bacteriology,
Copied contents to your clipboard!