Protein concentrations have little effect on reabsorption of fluid from isolated rat lungs. 1991

R M Effros, and A Hacker, and P Silverman, and J Hukkanen
Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee 53226.

A study was conducted to determine whether differences in the concentrations of large molecules between the air space and perfusate solutions altered the rates at which fluid was reabsorbed from isolated fluid-filled perfused rat lungs. Four groups of experiments were conducted: 1) 5 g/dl albumin in the air spaces and perfusate, 2) 15 g/dl albumin in the air space and 5 g/dl albumin in the perfusate, 3) 5 g/dl albumin in the air space and 15 g/dl albumin in the perfusate, and 4) a mixture of 5 g/dl albumin and 7 g/dl Dextran 70 in the air spaces and 5 g/dl albumin in the perfusate. Fluid reabsorption was determined by following the concentration of albumin labeled with Evans blue (T-1824) in the air space and perfusate compartments. Because leakage of protein between the air space and perfusate compartments is very slow, increases in T-1824 concentrations in the air spaces indicated loss of fluid from this compartment, whereas decreases in these concentrations in the perfusate compartment provided evidence of fluid transport into the vasculature. Approximately 30% of the air space fluid was reabsorbed in a 2-h period, and virtually all of this fluid reached the perfusate compartment. Despite oncotic differences that ranged from -65 to 65 Torr, variations in air space or perfusate albumin concentrations did not have a significant effect on this process. A 30% decrease in fluid reabsorption was observed when dextran was in the air space solution, but this decrease did not appear to be due to the oncotic properties of this solution because albumin did not have a measurable effect on reabsorption.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011654 Pulmonary Edema Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening. Wet Lung,Edema, Pulmonary,Edemas, Pulmonary,Pulmonary Edemas,Lung, Wet,Lungs, Wet,Wet Lungs
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000418 Albumins Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating. Albumin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R M Effros, and A Hacker, and P Silverman, and J Hukkanen
April 1991, Journal of applied physiology (Bethesda, Md. : 1985),
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
May 1987, Circulation research,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
September 1987, The American review of respiratory disease,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
July 1990, Chest,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
November 1977, Endocrinology,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
February 1977, The Journal of physiology,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
May 1990, Experimental physiology,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
May 1980, The American journal of physiology,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
January 1972, Pflugers Archiv : European journal of physiology,
R M Effros, and A Hacker, and P Silverman, and J Hukkanen
January 1977, Journal of reproduction and fertility,
Copied contents to your clipboard!