Differential regulation of communication by retinoic acid in homologous and heterologous junctions between normal and transformed cells. 1991

P P Mehta, and W R Loewenstein
Department of Physiology and Biophysics, University of Miami School of Medicine, Florida 33101.

The permeability of junctions between cells of the same type (homologous junctions) is greatly increased by retinoic acid (10(-9)-10(-8) M), a probable morphogen, and this responsiveness is shared by a variety of normal and transformed cell types (Mehta, P.P., J.S. Bertram, and W.R. Loewenstein. 1989. J. Cell Biol. 108:1053-1065). Here we report that the heterologous junctions between the normal and transformed cells respond in the opposite direction; their permeability is reduced by retinoic acid (greater than or equal to 10(-9) M) and its benzoic acid derivative tetrahydrotetramethylnaphthalenylpropenylbenzoic acid (greater than or equal to 10(-11) M). The opposite responses of the two classes of junction are shown to be concurrent; in cocultures of normal 10T1/2 cells and their methylcholanthrene-transformed counterparts, the permeability of the heterologous junctions, which is lower than that of the homologous junctions to start with, falls (within 20 h of retinoid application), at the same time that the permeability of the homologous junctions rises in both cell types. Such a counter-regulation requires a minimum of three degrees of cellular differentiation. A model is proposed in which the differentiations reside in a trio of junctional channel protein. The principle of the model may have wide applications in the regulation of intercellular communication at tissue boundaries, including embryonic ones.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001565 Benzoates Derivatives of BENZOIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxybenzene structure. Benzoate,Benzoic Acids,Acids, Benzoic

Related Publications

P P Mehta, and W R Loewenstein
March 2000, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology,
P P Mehta, and W R Loewenstein
June 1986, Carcinogenesis,
P P Mehta, and W R Loewenstein
July 1977, Proceedings of the National Academy of Sciences of the United States of America,
P P Mehta, and W R Loewenstein
July 1986, Biochemical and biophysical research communications,
P P Mehta, and W R Loewenstein
December 1959, The American journal of physiology,
Copied contents to your clipboard!