Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex. 2010

Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
Department of Biophysics, Kyoto University Graduate School of Science, Sakyo-ku, Kyoto, Japan.

Callosal projection neurons, one of the major types of projection neurons in the mammalian cerebral cortex, require neuronal activity for their axonal projections [H. Mizuno et al. (2007) J. Neurosci., 27, 6760-6770; C. L. Wang et al. (2007) J. Neurosci., 27, 11334-11342]. Here we established a method to label a few callosal axons with enhanced green fluorescent protein in the mouse cerebral cortex and examined the effect of pre-synaptic/post-synaptic neuron silencing on the morphology of individual callosal axons. Pre-synaptic/post-synaptic neurons were electrically silenced by Kir2.1 potassium channel overexpression. Single axon tracing showed that, after reaching the cortical innervation area, green fluorescent protein-labeled callosal axons underwent successive developmental stages: axon growth, branching, layer-specific targeting and arbor formation between post-natal day (P)5 and P9, and the subsequent elaboration of axon arbors between P9 and P15. Reducing pre-synaptic neuronal activity disturbed axon growth and branching before P9, as well as arbor elaboration afterwards. In contrast, silencing post-synaptic neurons disturbed axon arbor elaboration between P9 and P15. Thus, pre-synaptic neuron silencing affected significantly earlier stages of callosal projection neuron axon development than post-synaptic neuron silencing. Silencing both pre-synaptic and post-synaptic neurons impaired callosal axon projections, suggesting that certain levels of firing activity in pre-synaptic and post-synaptic neurons are required for callosal axon development. Our findings provide in-vivo evidence that pre-synaptic and post-synaptic neuronal activities play critical, and presumably differential, roles in axon growth, branching, arbor formation and elaboration during cortical axon development.

UI MeSH Term Description Entries
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
January 2012, Neural plasticity,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
January 2014, Frontiers in neural circuits,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
October 1983, The Journal of physiology,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
June 1984, Neuroscience letters,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
January 1992, Brain research bulletin,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
January 2018, Frontiers in neural circuits,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
January 1967, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
April 1984, Brain research,
Hidenobu Mizuno, and Tomoo Hirano, and Yoshiaki Tagawa
May 2008, Neuroscience,
Copied contents to your clipboard!