BKCa currents are enriched in a subpopulation of adult rat cutaneous nociceptive dorsal root ganglion neurons. 2010

Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD 21201, USA.

The biophysical properties and distribution of voltage-dependent, Ca(2+) -modulated K(+) (BK(Ca)) currents among subpopulations of acutely dissociated DiI-labeled cutaneous sensory neurons from the adult rat were characterized with whole-cell patch-clamp techniques. BK(Ca) currents were isolated from total K(+) current with iberiotoxin, charybdotoxin or paxilline. There was considerable variability in biophysical properties of BK(Ca) currents. There was also variability in the distribution of BK(Ca) current among subpopulations of cutaneous dorsal root ganglia (DRG) neurons. While present in each of the subpopulations defined by cell body size, IB4 binding or capsaicin sensitivity, BK(Ca) current was present in the vast majority (> 90%) of small-diameter IB4+ neurons, but was present in only a minority of neurons in subpopulations defined by other criteria (i.e. small-diameter IB4-). Current-clamp analysis indicated that in IB4+ neurons, BK(Ca) currents contribute to the repolarization of the action potential and adaptation in response to sustained membrane depolarization, while playing little role in the determination of action potential threshold. Reverse transcriptase-polymerase chain reaction analysis of mRNA collected from whole DRG revealed the presence of multiple splice variants of the BK(Ca) channel alpha-subunit, rslo and all four of the accessory beta-subunits, suggesting that heterogeneity in the biophysical and pharmacological properties of BK(Ca) current in cutaneous neurons reflects, at least in part, the differential distribution of splice variants and/or beta-subunits. Because even a small decrease in BK(Ca) current appears to have a dramatic influence on excitability, modulation of this current may contribute to sensitization of nociceptive afferents observed following tissue injury.

UI MeSH Term Description Entries
D008297 Male Males
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017398 Alternative Splicing A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested
D048430 Cell Shape The quality of surface form or outline of CELLS. Cell Shapes,Shape, Cell,Shapes, Cell
D051037 Large-Conductance Calcium-Activated Potassium Channel alpha Subunits The pore-forming subunits of large-conductance calcium-activated potassium channels. They form tetramers in CELL MEMBRANES. Large-Conductance Calcium-Activated Potassium Channels, alpha Subunit,MaxiK Channel alpha Subunit,Large Conductance Calcium Activated Potassium Channel alpha Subunits,Large Conductance Calcium Activated Potassium Channels, alpha Subunit
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
June 2004, Autonomic neuroscience : basic & clinical,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
May 2005, Brain research,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
May 2007, Brain research,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
November 2003, Brain research,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
November 2005, Brain research,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
April 2003, Brain research,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
January 2003, Neuroscience,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
April 2005, Brain research,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
January 2003, Brain research,
Xiu-Lin Zhang, and Lee-Peng Mok, and Elizabeth J Katz, and Michael S Gold
January 2011, Brain research,
Copied contents to your clipboard!