Single-channel K+ currents recorded from the somatic and dendritic regions of cerebellar Purkinje neurons in culture. 1991

D L Gruol, and T Jacquin, and A J Yool
Department of Neuropharmacology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Voltage-sensitive K+ channels were studied in rat cerebellar Purkinje neurons in culture using the single-channel recording technique. Recordings in the cell-attached and outside-out configuration revealed multiple voltage-sensitive K+ channel types in patches from both the somatic and the dendritic regions. K+ channel types were present in all patches studied. The same channel types were observed in somatic and dendritic recordings. Channel types were identified by reversal potential, single-channel conductance, voltage sensitivity, and patterns of activity. In cell-attached patches recorded under physiological conditions, 3 channel types were identified. Mean single-channel conductances were 92, 57, and 12 pS. All 3 channel types were activated by membrane depolarization. Similar channel types were identified in inside-out and outside-out patches recorded under physiological conditions. Two additional channel types were identified in the outside-out patches, with mean single-channel conductances of 41 and 26 pS. In cell-attached recordings under symmetrical K+ conditions, 6 channel types were identified. Mean single-channel conductances were 222, 134, 39, 25, 14, and 15 pS. Channel types with mean conductances of 222, 134, and 39 pS required membrane depolarization for activation. A comparison of channel properties indicated that these channel types correlated with the 3 channel types observed in cell-attached patches under physiological conditions. The 3 smaller-conductance channel types (25, 14, and 15 pS) were active at potentials around rest or at hyperpolarized membrane potentials. Two K+ channel types (39 and 25 pS) were commonly associated with the late phase of extracellularly recorded spontaneous spike events, suggesting a functional role in the repolarizing phase of somatic and dendritic action potentials. These results demonstrate that voltage-sensitive K+ channels are a prominent component of both the somatic and the dendritic membrane of the cerebellar Purkinje neuron and support the view that multiple voltage-sensitive K+ channel types contribute to the membrane functions of both cellular regions in this CNS neuronal type.

UI MeSH Term Description Entries
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

D L Gruol, and T Jacquin, and A J Yool
November 1997, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
D L Gruol, and T Jacquin, and A J Yool
February 1989, Neuroscience letters,
D L Gruol, and T Jacquin, and A J Yool
February 2010, Journal of neuroscience research,
D L Gruol, and T Jacquin, and A J Yool
April 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D L Gruol, and T Jacquin, and A J Yool
January 1983, The Journal of membrane biology,
D L Gruol, and T Jacquin, and A J Yool
January 1984, Biophysical journal,
D L Gruol, and T Jacquin, and A J Yool
April 2017, Bulletin of experimental biology and medicine,
Copied contents to your clipboard!