Mitochondrial function and cerebral blood flow variable responses to middle cerebral artery occlusion. 2010

Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
The Mina & Everard Goodman Faculty of Life-Sciences and the Gonda Multidisciplinary Brain Research Center Bar-Ilan University, Ramat-Gan, Israel. amirtolaat@yahoo.com

Middle cerebral artery occlusion (MCAO), which leads to focal cerebral ischemia, serves as an experimental model for brain stroke. There is a large variation in protocols and techniques using the MCAO model, which may affect the outcomes seen in different studies. The current work presents and compares the diverse responses in mitochondrial NADH and cerebral blood flow (CBF) following focal ischemia induced by the MCAO technique. Ninety-six Wistar rats underwent focal cerebral ischemia by MCAO, and monitored in the core and the penumbra using a unique Multi-Site-Multi-Parametric (MSMP) system, which measures mitochondrial NADH using the fluorometric technique, and CBF using laser Doppler flowmetry (LDF). Following MCAO, 58% of the experiments yielded expected responses, namely a decrease in CBF and an increase in NADH. However, 42% of the experiments showed six other profiles of responses, in which CBF, NADH and tissue reflectance (Ref) responded differently. These profiles included: ischemia without reperfusion, death following reperfusion, minor responses in parameters during ischemia, CBF elevation in the penumbra following MCAO, spontaneous early reperfusion and late reperfusion. These results demonstrate that MCAO is a complex model, which may lead to different responses other than the common expected outcomes, i.e. mitochondrial damage and reduced blood flow in both core and penumbra. The MSMP monitoring system may serve as an important tool in early diagnosis of successful focal cerebral ischemia, reducing the percentage of unsuccessful experiments.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D017078 Laser-Doppler Flowmetry A method of non-invasive, continuous measurement of MICROCIRCULATION. The technique is based on the values of the DOPPLER EFFECT of low-power laser light scattered randomly by static structures and moving tissue particulates. Doppler-Laser Flowmetry,Flowmetry, Laser-Doppler,Laser-Doppler Velocimetry,Velocimetry, Laser-Doppler,Doppler Laser Flowmetry,Flowmetry, Doppler-Laser,Flowmetry, Laser Doppler,Laser Doppler Flowmetry,Laser Doppler Velocimetry,Velocimetry, Laser Doppler

Related Publications

Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
January 1968, Scandinavian journal of clinical and laboratory investigation. Supplementum,
Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
April 1986, Acta neurologica Scandinavica,
Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
December 1966, Neurology,
Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
November 1989, The American journal of physiology,
Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
January 1970, Neurology,
Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
January 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
January 1977, Acta neurologica Scandinavica. Supplementum,
Amir Livnat, and Efrat Barbiro-Michaely, and Avraham Mayevsky
January 1987, Stroke,
Copied contents to your clipboard!