Hatching mechanism of the Chinese soft-shelled turtle Pelodiscus sinensis. 2010

Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
Department of Materials and Life Sciences, Sophia University, Tokyo, Japan.

The mechanism by which the embryo hatches out of the egg envelope, the vitelline membrane and egg white, was studied in the Chinese soft-shelled turtle Pelodiscus sinensis. The cDNA of the turtle hatching enzyme (HE) was 1555bp-long and a mature enzyme of 321 amino acids. The mature HE was composed of an astacin protease domain of 200 amino acids and a CUB domain of 121 amino acids, and the estimated molecular size was 35,311. The protease domain contained two active site consensus sequences, HExxHxxGFxHExxRxDR and MHY. An immunoblotting test of an extract of allanto-chorions revealed a 40-kDa band by cross-reaction with the anti-Xenopus HE antiserum. The first change in the envelopes was the appearance of a hole, 1mm in diameter, at the location around the animal pole of day 8 incubation eggs. A cluster of tall cells, forming a circle in the avascular chorion of day 8 embryos and facing the edge of the hole, had various sizes of inclusion bodies and secretory granules that were labeled by immuno-electron microscopic staining with the antiserum. The egg envelopes were degraded gradually from the animal pole side towards the vegetal pole side in accordance with translocation of the avascular site of the chorion in the same direction. Labeled cells degenerated, presumably when the chorion was underlain by allantois in succeeding developmental stages. The vitelline membrane and egg white were totally digested, presumably by secreted HE, during the hatching period and were consumed for embryonic growth.

UI MeSH Term Description Entries
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA

Related Publications

Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
October 2007, Anatomical record (Hoboken, N.J. : 2007),
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
February 2023, Animals : an open access journal from MDPI,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
February 2017, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
November 2009, Journal of morphology,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
October 2018, Reproduction, fertility, and development,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
May 2017, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
December 2013, Tissue & cell,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
November 2015, Journal of experimental zoology. Part A, Ecological genetics and physiology,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
January 2017, Iranian journal of veterinary research,
Shigeki Yasumasu, and Moeko Uzawa, and Atsushi Iwasawa, and Norio Yoshizaki
January 2017, Journal of experimental zoology. Part A, Ecological and integrative physiology,
Copied contents to your clipboard!