Targeting allergen to FcgammaRI reveals a novel T(H)2 regulatory pathway linked to thymic stromal lymphopoietin receptor. 2010

Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA 22908-1355, USA.

BACKGROUND The molecule H22-Fel d 1, which targets cat allergen to FcgammaRI on dendritic cells (DCs), has the potential to treat cat allergy because of its T-cell modulatory properties. OBJECTIVE We sought to investigate whether the T-cell response induced by H22-Fel d 1 is altered in the presence of the T(H)2-promoting cytokine thymic stromal lymphopoietin (TSLP). METHODS Studies were performed in subjects with cat allergy with and without atopic dermatitis. Monocyte-derived DCs were primed with H22-Fel d 1 in the presence or absence of TSLP, and the resulting T-cell cytokine repertoire was analyzed by flow cytometry. The capacity for H22-Fel d 1 to modulate TSLP receptor expression on DCs was examined by flow cytometry in the presence or absence of inhibitors of Fc receptor signaling molecules. RESULTS Surprisingly, TSLP alone was a weak inducer of T(H)2 responses irrespective of atopic status; however, DCs coprimed with TSLP and H22-Fel d 1 selectively and synergistically amplified T(H)2 responses in highly atopic subjects. This effect was OX40 ligand independent, pointing to an unconventional TSLP-mediated pathway. Expression of TSLP receptor was upregulated on atopic DCs primed with H22-Fel d 1 through a pathway regulated by FcgammaRI-associated signaling components, including src-related tyrosine kinases and Syk, as well as the downstream molecule phosphoinositide 3-kinase. Inhibition of TSLP receptor upregulation triggered by H22-Fel d 1 blocked TSLP-mediated T(H)2 responses. CONCLUSIONS Discovery of a novel T(H)2 regulatory pathway linking FcgammaRI signaling to TSLP receptor upregulation and consequent TSLP-mediated effects questions the validity of receptor-targeted allergen vaccines.

UI MeSH Term Description Entries
D006969 Hypersensitivity, Immediate Hypersensitivity reactions which occur within minutes of exposure to challenging antigen due to the release of histamine which follows the antigen-antibody reaction and causes smooth muscle contraction and increased vascular permeability. Atopic Hypersensitivity,Hypersensitivity, Atopic,Hypersensitivity, Type I,IgE-Mediated Hypersensitivity,Type I Hypersensitivity,Atopic Hypersensitivities,Hypersensitivities, Atopic,Hypersensitivities, IgE-Mediated,Hypersensitivities, Immediate,Hypersensitivities, Type I,Hypersensitivity, IgE-Mediated,IgE Mediated Hypersensitivity,IgE-Mediated Hypersensitivities,Immediate Hypersensitivities,Immediate Hypersensitivity,Type I Hypersensitivities
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D003876 Dermatitis, Atopic A chronic inflammatory genetically determined disease of the skin marked by increased ability to form reagin (IgE), with increased susceptibility to allergic rhinitis and asthma, and hereditary disposition to a lowered threshold for pruritus. It is manifested by lichenification, excoriation, and crusting, mainly on the flexural surfaces of the elbow and knee. In infants it is known as infantile eczema. Eczema, Atopic,Eczema, Infantile,Neurodermatitis, Atopic,Neurodermatitis, Disseminated,Atopic Dermatitis,Atopic Eczema,Atopic Neurodermatitis,Disseminated Neurodermatitis,Infantile Eczema
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000094632 Thymic Stromal Lymphopoietin A pleiotropic cytokine involved in INFLAMMATION and immunoregulation. Thymic stromal lymphopoietin can activate MAST CELLS; DENDRITIC CELLS; and T-LYMPHOCYTES, and is produced by various cell types, including epithelial and dendritic cells.. TSLP Cytokine,Cytokine, TSLP,Lymphopoietin, Thymic Stromal,Stromal Lymphopoietin, Thymic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
August 2008, Diabetes,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
February 2018, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
November 2010, The Journal of allergy and clinical immunology,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
December 2008, The Journal of allergy and clinical immunology,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
July 2004, The Journal of experimental medicine,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
May 2013, Journal of immunology (Baltimore, Md. : 1950),
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
November 2011, Cancer immunology, immunotherapy : CII,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
April 2018, International journal of molecular sciences,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
March 2017, Cellular and molecular gastroenterology and hepatology,
Kathryn E Hulse, and Amanda J Reefer, and Victor H Engelhard, and James T Patrie, and Steven F Ziegler, and Martin D Chapman, and Judith A Woodfolk
January 2012, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!