Kinesin-1/Hsc70-dependent mechanism of slow axonal transport and its relation to fast axonal transport. 2010

Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
Department of Cell Biology and Anatomy, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.

Cytoplasmic protein transport in axons ('slow axonal transport') is essential for neuronal homeostasis, and involves Kinesin-1, the same motor for membranous organelle transport ('fast axonal transport'). However, both molecular mechanisms of slow axonal transport and difference in usage of Kinesin-1 between slow and fast axonal transport have been elusive. Here, we show that slow axonal transport depends on the interaction between the DnaJ-like domain of the kinesin light chain in the Kinesin-1 motor complex and Hsc70, scaffolding between cytoplasmic proteins and Kinesin-1. The domain is within the tetratricopeptide repeat, which can bind to membranous organelles, and competitive perturbation of the domain in squid giant axons disrupted cytoplasmic protein transport and reinforced membranous organelle transport, indicating that this domain might have a function as a switchover system between slow and fast transport by Hsc70. Transgenic mice overexpressing a dominant-negative form of the domain showed delayed slow transport, accelerated fast transport and optic axonopathy. These findings provide a basis for the regulatory mechanism of intracellular transport and its intriguing implication in neuronal dysfunction.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
June 2000, Molecular biology of the cell,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
January 1991, Annual review of neuroscience,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
August 2015, Cell death and differentiation,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
February 2002, Current opinion in cell biology,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
January 1988, Proceedings of the National Academy of Sciences of the United States of America,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
July 2013, The Journal of cell biology,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
July 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
January 1988, Cell motility and the cytoskeleton,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
September 1968, The Journal of cell biology,
Sumio Terada, and Masataka Kinjo, and Makoto Aihara, and Yosuke Takei, and Nobutaka Hirokawa
April 2020, Development (Cambridge, England),
Copied contents to your clipboard!