Development of resistance to dasatinib in Bcr/Abl-positive acute lymphoblastic leukemia. 2010

F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
Section of Molecular Carcinogenesis, Division of Hematology/Oncology, The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.

Dasatinib is a potent dual Abl/Src inhibitor approved for treatment of Philadelphia chromosome-positive (Ph-positive) leukemias. At a once-daily dose and a relatively short half-life of 3-5 h, tyrosine kinase inhibition is not sustained. However, transient inhibition of K562 leukemia cells with a high-dose pulse of dasatinib or long-term treatment with a lower dose was reported to irreversibly induce apoptosis. Here, the effect of dasatinib on treatment of Bcr/Abl-positive acute lymphoblastic leukemia (ALL) cells was evaluated in the presence of stromal support. Dasatinib eradicated Bcr/Abl ALL cells, caused significant apoptosis and eliminated tyrosine phosphorylation on Bcr/Abl, Src, Crkl and Stat-5. However, treatment of mouse ALL cells with lower doses of dasatinib over an extended period of time allowed the emergence of viable drug-resistant cells. Interestingly, dasatinib treatment increased cell-surface expression of CXCR4, which is important for survival of B-lineage cells, but this did not promote survival. Combined treatment of cells with dasatinib and a CXCR4 inhibitor resulted in enhanced cell death. These results do not support the concept that long-term treatment with low-dose dasatinib monotherapy will be effective in causing irreversible apoptosis in Ph-positive ALL, but suggest that combined treatment with dasatinib and drugs such as AMD3100 may be effective.

UI MeSH Term Description Entries
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000069439 Dasatinib A pyrimidine and thiazole derived ANTINEOPLASTIC AGENT and PROTEIN KINASE INHIBITOR of BCR-ABL KINASE. It is used in the treatment of patients with CHRONIC MYELOID LEUKEMIA who are resistant or intolerant to IMATINIB. (18F)-N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide,BMS 354825,BMS-354825,BMS354825,N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide,Sprycel,354825, BMS
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
August 2012, Oncoimmunology,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
March 2015, Haematologica,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
January 2007, Cancer genetics and cytogenetics,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
July 2004, Bone marrow transplantation,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
March 2017, International journal of hematology,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
October 1988, Leukemia,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
March 2008, Blood,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
March 2005, Cancer genetics and cytogenetics,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
November 2002, American journal of hematology,
F Fei, and S Stoddart, and M Müschen, and Y-m Kim, and J Groffen, and N Heisterkamp
May 2006, Cancer research,
Copied contents to your clipboard!