Characteristics and EGFP expression of goat mammary gland epithelial cells. 2010

Y-M Zheng, and X-Y He, and Y Zhang
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.

The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D002364 Caseins A mixture of related phosphoproteins occurring in milk and cheese. The group is characterized as one of the most nutritive milk proteins, containing all of the common amino acids and rich in the essential ones. alpha-Casein,gamma-Casein,AD beta-Casein,Acetylated, Dephosphorylated beta-Casein,Casein,Casein A,K-Casein,Sodium Caseinate,alpha(S1)-Casein,alpha(S1)-Casein A,alpha(S1)-Casein B,alpha(S1)-Casein C,alpha(S2)-Casein,alpha-Caseins,beta-Casein,beta-Caseins,epsilon-Casein,gamma-Caseins,kappa-Casein,kappa-Caseins,AD beta Casein,Caseinate, Sodium,K Casein,alpha Casein,alpha Caseins,beta Casein,beta Caseins,beta-Casein Acetylated, Dephosphorylated,beta-Casein, AD,epsilon Casein,gamma Casein,gamma Caseins,kappa Casein,kappa Caseins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006041 Goats Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP. Capra,Capras,Goat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse

Related Publications

Y-M Zheng, and X-Y He, and Y Zhang
August 2010, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Y-M Zheng, and X-Y He, and Y Zhang
January 2013, In vitro cellular & developmental biology. Animal,
Y-M Zheng, and X-Y He, and Y Zhang
January 1991, Comparative biochemistry and physiology. A, Comparative physiology,
Y-M Zheng, and X-Y He, and Y Zhang
August 1986, The Biochemical journal,
Y-M Zheng, and X-Y He, and Y Zhang
December 1994, Cellular and molecular biology (Noisy-le-Grand, France),
Y-M Zheng, and X-Y He, and Y Zhang
December 2016, Animal science journal = Nihon chikusan Gakkaiho,
Y-M Zheng, and X-Y He, and Y Zhang
April 2020, Yi chuan = Hereditas,
Copied contents to your clipboard!