Radiosensitive severe combined immunodeficiency disease. 2010

Christopher C Dvorak, and Morton J Cowan
Division of Pediatric Blood and Marrow Transplantation, University of California, San Francisco, 505 Parnassus Avenue, M-659, San Francisco, CA 94143-1278, USA.

Inherited defects in components of the nonhomologous end-joining DNA repair mechanism produce a T-B-NK+ severe combined immunodeficiency disease (SCID) characterized by heightened sensitivity to ionizing radiation. Patients with the radiosensitive form of SCID may also have increased short- and long-term sensitivity to the alkylator-based chemotherapy regimens that are traditionally used for conditioning before allogeneic hematopoietic cell transplantation (HCT). Known causes of radiosensitive SCID include deficiencies of Artemis, DNA ligase IV, DNA-dependent protein kinase catalytic subunit, and Cernunnos-XLF, all of which have been treated with HCT. Because of these patients' sensitivity to certain forms of chemotherapy, the approach to donor selection and the type of conditioning regimen used for a patient with radiosensitive SCID requires careful consideration. Significantly more research needs to be done to determine the long-term outcomes of patients with radiosensitive SCID after HCT and to discover novel nontoxic approaches to HCT that might benefit those patients with intrinsic radiosensitivity and chemosensitivity as well as potentially all patients undergoing an HCT.

UI MeSH Term Description Entries
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072481 DNA Ligase ATP ATP-dependent cellular enzyme which catalyzes DNA replication, repair and recombination through formation of internucleotide ester bonds between phosphate and deoxyribose moieties. Vertebrate cells encode three well-characterized DNA ligases, DNA ligase I, III and IV, all of which are related in structure and sequence. DNA ligases either require ATP or NAD. However, archaebacterial, viral, and some eubacterial DNA ligases are ATP-dependent. ATP-Dependent DNA Ligase,DNA Ligase I,DNA Ligase II,DNA Ligase III,DNA Ligase IIIalpha,DNA Ligase IV,DNA Ligases, ATP-Dependent,LIGIIIalpha Protein,Polydeoxyribonucleotide Synthase ATP,ATP Dependent DNA Ligase,ATP, DNA Ligase,ATP, Polydeoxyribonucleotide Synthase,ATP-Dependent DNA Ligases,DNA Ligase, ATP-Dependent,DNA Ligases, ATP Dependent,IIIalpha, DNA Ligase,Ligase ATP, DNA,Ligase I, DNA,Ligase II, DNA,Ligase III, DNA,Ligase IIIalpha, DNA,Ligase IV, DNA,Ligase, ATP-Dependent DNA,Ligases, ATP-Dependent DNA,Synthase ATP, Polydeoxyribonucleotide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic
D016511 Severe Combined Immunodeficiency Group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. It is inherited as an X-linked or autosomal recessive defect. Mutations occurring in many different genes cause human Severe Combined Immunodeficiency (SCID). Bare Lymphocyte Syndrome,Immunodeficiency, Severe Combined,Omenn Syndrome,Immunodeficiency Syndrome, Severe Combined,Immunologic Deficiency, Severe Combined,Omenn's Syndrome,Reticuloendotheliosis, Familial,Severe Combined Immune Deficiency,Severe Combined Immunodeficiency Syndrome,Severe Combined Immunologic Deficiency,Bare Lymphocyte Syndromes,Combined Immunodeficiencies, Severe,Combined Immunodeficiency, Severe,Familial Reticuloendothelioses,Familial Reticuloendotheliosis,Immunodeficiencies, Severe Combined,Lymphocyte Syndrome, Bare,Lymphocyte Syndromes, Bare,Omenns Syndrome,Reticuloendothelioses, Familial,Severe Combined Immunodeficiencies,Syndrome, Bare Lymphocyte,Syndrome, Omenn,Syndrome, Omenn's,Syndromes, Bare Lymphocyte

Related Publications

Christopher C Dvorak, and Morton J Cowan
September 2023, Cureus,
Christopher C Dvorak, and Morton J Cowan
April 2003, Human genetics,
Christopher C Dvorak, and Morton J Cowan
November 2001, Nihon rinsho. Japanese journal of clinical medicine,
Christopher C Dvorak, and Morton J Cowan
January 2006, The Journal of clinical investigation,
Christopher C Dvorak, and Morton J Cowan
February 1972, The Journal of pediatrics,
Christopher C Dvorak, and Morton J Cowan
June 1977, Lancet (London, England),
Christopher C Dvorak, and Morton J Cowan
March 1979, The Journal of pediatrics,
Christopher C Dvorak, and Morton J Cowan
August 2002, The New England journal of medicine,
Christopher C Dvorak, and Morton J Cowan
January 1998, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!