Phorbol ester-mediated inhibition of growth and regulation of proto-oncogene expression in the human T cell leukemia line JURKAT. 1991

D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
Department of Internal Medicine, University of Pennsylvania, Philadelphia 19104.

The expression and function of several proto-oncogenes were examined in a human acute T cell leukemia line, JURKAT, during phorbol ester-induced terminal differentiation. Treating JURKAT cells with the phorbol ester tetradecanoyl phorbol acetate (TPA) inhibited their proliferation and induced expression of the gene for the interleukin 2 receptor alpha chain (IL2R-alpha), consistent with previous reports. In unstimulated proliferating JURKAT cells, high levels of C-MYC, N-RAS, and BCL2 mRNAs were found that diminished rapidly following TPA-induced cessation of growth. In contrast, accumulation of mRNAs for the C-FOS, C-JUN, and EGR-1 genes increased markedly in TPA-treated cells and preceded the induction of IL2R-alpha mRNA. Expression of C-MYB, C-RAF-1, C-LCK, C-FYN, and C-FGR proto-oncogenes was relatively unchanged. To explore directly the function of two of these protooncogenes in regulating the growth of JURKAT T cells, we stably transferred C-MYC and BCL2 expression plasmids into these cells. Despite sustained expression of C-MYC, BCL2, or the combination of these protooncogenes, TPA continued to inhibit JURKAT cell growth and to induce IL2R expression. Thus, although C-MYC and BCL2 proto-oncogene expression correlated with proliferation in TPA-treated JURKAT cells, continuous over-expression of even the combination of these oncogenes was insufficient for abrogating the effects of TPA in these leukemic T cells. Because human lymphoid malignancies frequently contain chromosomal translocations that deregulate the expression of C-MYC and BCL2, our findings could have relevance for attempts to induce terminal differentiation of leukemic cells by in vitro exposure of patients' bone marrow cells to phorbol esters.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000090063 Proto-Oncogene Mas A protein that is encoded by the MAS1 gene. It is a receptor for ANGIOTENSIN 1-7 and acts as an antagonist of ANGIOTENSIN-2 TYPE 1 RECEPTOR. C-Mas Protein,II-Proto-Oncogene Proteins, Cellular,Mas Protein,Mas1 Protein,Proto-Oncogene Protein Mas,Proto-Oncogene Proteins C-Mas-1,C Mas Protein,C-Mas-1, Proto-Oncogene Proteins,Cellular II-Proto-Oncogene Proteins,II Proto Oncogene Proteins, Cellular,Mas, Proto-Oncogene,Protein Mas, Proto-Oncogene,Protein, C-Mas,Protein, Mas,Protein, Mas1,Proteins, Cellular II-Proto-Oncogene,Proto Oncogene Mas,Proto Oncogene Proteins C Mas 1
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
October 1983, Cancer research,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
August 1989, Journal of virology,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
August 1994, Biochemistry and molecular biology international,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
April 1990, The Biochemical journal,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
June 1995, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
January 1992, Cancer chemotherapy and pharmacology,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
October 2006, Ai zheng = Aizheng = Chinese journal of cancer,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
July 1998, Free radical biology & medicine,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
October 1987, Molecular and cellular biology,
D Makover, and M Cuddy, and S Yum, and K Bradley, and J Alpers, and V Sukhatme, and J C Reed
July 1993, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!