Apical and basolateral conductance in cultured A6 cells. 1991

M Granitzer, and T Leal, and W Nagel, and J Crabbe
Département de Physiologie, Université Catholique de Louvain, Bruxelles, Belgium.

Confluent monolayers of the cultured renal distal tubule cell line (A6) were impaled with microelectrodes under short-circuit conditions. Specific membrane conductances were calculated from equivalent circuit equations. Transport properties of the apical and basolateral membranes were investigated during control conditions and short-term increases in basolateral potassium concentration [K+] from 2.5 to 20 mmol/l, with or without 0.5 mmol/l Ba2+ at the basolateral side. As in most other epithelia, the apical membrane represents the major resistive barrier. Transcellular, apical and basolateral membrane conductances (gc, go and gi respectively), obtained from 22 acceptable microelectrode studies, averaged 61, 80 and 292 microS/cm2, respectively. There was a highly significant correlation between short-circuit current (Isc) and go, whereas gi was unrelated to Isc. The Isc, which averaged 4.1 microA/cm2, was almost completely blocked by amiloride. This was associated with fast hyperpolarization; the intracellular potential (Vsc) increased from -69 to -83 mV and the fractional apical resistance rose to nearly 100%. Using the values of Vsc during amiloride at normal and high [K+], an apparent transference number for K+ at the basolateral membrane of 0.72 can be calculated. This value corresponds with the decrease in gi to about 25% of the control values after blocking the K+ channels with Ba2+. The nature of the remaining conductance is presently unclear. The cellular current decreased during high [K+] and Ba2+, in part resulting from reduction of the electrochemical gradient for apical Na+ uptake due to the depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007686 Kidney Tubules, Distal The portion of renal tubule that begins from the enlarged segment of the ascending limb of the LOOP OF HENLE. It reenters the KIDNEY CORTEX and forms the convoluted segments of the distal tubule. Distal Kidney Tubule,Distal Renal Tubule,Distal Kidney Tubules,Distal Renal Tubules,Kidney Tubule, Distal,Renal Tubule, Distal,Renal Tubules, Distal,Tubule, Distal Kidney,Tubule, Distal Renal,Tubules, Distal Kidney,Tubules, Distal Renal
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

M Granitzer, and T Leal, and W Nagel, and J Crabbe
October 1991, The Journal of membrane biology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
December 2002, American journal of physiology. Renal physiology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
July 1999, Pflugers Archiv : European journal of physiology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
June 1993, The Journal of membrane biology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
April 1992, Pflugers Archiv : European journal of physiology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
June 1993, Pflugers Archiv : European journal of physiology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
January 1984, The Journal of membrane biology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
October 1984, Biochemical and biophysical research communications,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
September 1999, The American journal of physiology,
M Granitzer, and T Leal, and W Nagel, and J Crabbe
December 1998, The Journal of membrane biology,
Copied contents to your clipboard!