Glucose metabolic and gluconeogenic pathways disturbance in the intrauterine growth restricted adult male rats. 2009

Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
Central Laboratory, Shengjing Hospital, China Medical University, Shenyang 110004, China. liuxm1@sjhospital.org

OBJECTIVE To explore the molecular mechanism of type 2 diabetes in intrauterine growth restricted adult rats through determination of blood glucose and expression of gluconeogenic enzymes in liver. METHODS Male intrauterine growth restriction (IUGR) offspring induced by maternal protein-malnutrition and normal controls were studied. The body weights of offspring rats were weighted from birth to 12 weeks of age. Fasting plasma glucose and insulin levels were determined by glucose oxidase method and enzyme-linked immunosorbent assay (ELISA) respectively at 1 week, 8 weeks, and 12 weeks. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase) mRNA and protein levels in liver were measured by real time RT-PCR and Western blot in newborn rats (Week 1) and adult rats (Week 12). RESULTS Birth weights of IUGR rats were significantly lower than those of controls until 4 weeks later, when IUGR rats caught up to controls. Between 8 and 12 weeks, the growth of IUGR rats surpassed that of controls. No significant differences were observed in blood glucose and insulin levels at newborn rats between the two groups. However, by the end of 8 weeks IUGR rats developed hyperinsulinemia and high insulin resistance index. At the age of 12 weeks, IUGR rats had mild fasting hyperglycemia. In addition, hepatic PGC-1 alpha mRNA and protein levels as well as hepatic mRNA levels of PEPCK and G6Pase at Week 1 and Week 12 in IUGR rats were all significantly higher than those of controls (P<0.05). CONCLUSIONS As a result of intrauterine malnutrition, the expression of gluconeogenic genes is exaggerated in offspring. This change stays through adulthood and may contribute to the pathogenesis of type 2 diabetes.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D005260 Female Females
D005317 Fetal Growth Retardation Failure of a FETUS to attain expected GROWTH. Growth Retardation, Intrauterine,Intrauterine Growth Retardation,Fetal Growth Restriction,Intrauterine Growth Restriction
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005952 Glucose-6-Phosphatase An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9. Glucosephosphatase,Glucose 6-Phosphatase,Glucose-6-Phosphate Phosphohydrolase,Glucose 6 Phosphatase
D000071248 Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha A transcriptional co-activator for NUCLEAR RECEPTORS. It is characterized by an N-terminal LxxLL sequence, a region that interacts with PPAR GAMMA, and a C-terminal RNA RECOGNITION MOTIF. It increases expression of MITOCHONDRIAL UNCOUPLING PROTEIN to regulate genes involved in metabolic reprogramming in response to dietary restriction and the integration of CIRCADIAN RHYTHMS with ENERGY METABOLISM. PGC-1-alpha Protein,PPARGC-1-alpha Protein,PPARGC1a Protein,PGC 1 alpha Protein,PPARGC 1 alpha Protein,Peroxisome Proliferator Activated Receptor Gamma Coactivator 1 alpha
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
June 2006, American journal of physiology. Endocrinology and metabolism,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
January 2012, PloS one,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
April 2015, Journal of cellular biochemistry,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
January 2017, PloS one,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
January 2019, PloS one,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
December 1979, Early human development,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
June 2012, Diabetes,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
March 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Xiao-mei Liu, and Jing Kong, and Wei-wei Song, and Yan Lu
March 2013, European journal of nutrition,
Copied contents to your clipboard!