Single quantum dot-based nanosensor for multiple DNA detection. 2010

Chun-yang Zhang, and Juan Hu
Institute of Biomedical Engineering and Health Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. cy.zhang@sub.siat.ac.cn

Owing to their unique optical properties, quantum dots (QDs) with different colors have been applied for simultaneous detection of multiple analytes. However, the use of single QD for multiplex detection of analytes with single-molecule detection has not been explored. Here we report a single QD-based nanosensor for multiplex detection of HIV-1 and HIV-2 at single-molecule level in a homogeneous format. In this single QD-based nanosensor, the QD functions not only as a fluorescence pair for coincidence detection and as a fluorescence-resonance-energy-transfer (FRET) donor for FRET detection but also as a local nanoconcentrator which significantly amplifies the coincidence-related fluorescence signals and the FRET signals. This single-QD-based nanosensor takes advantage of a simple 'mix and detection' assay with extremely low sample consumption, high sensitivity, and short analysis time and has the potential to be applied for rapid point-of-care testing, gene expression studies, high-throughput screening, and clinical diagnostics.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D045663 Quantum Dots Nanometer sized fragments of semiconductor crystalline material which emit PHOTONS. The wavelength is based on the quantum confinement size of the dot. They can be embedded in MICROBEADS for high throughput ANALYTICAL CHEMISTRY TECHNIQUES. Nanocrystals, Semiconductor,Semiconductor Nanocrystals,Semiconductor Nanoparticles,Dot, Quantum,Dots, Quantum,Nanocrystal, Semiconductor,Nanoparticle, Semiconductor,Nanoparticles, Semiconductor,Quantum Dot,Semiconductor Nanocrystal,Semiconductor Nanoparticle
D036103 Nanotechnology The development and use of techniques to study physical phenomena and construct structures in the nanoscale size range or smaller. Nanotechnologies

Related Publications

Chun-yang Zhang, and Juan Hu
November 2005, Nature materials,
Chun-yang Zhang, and Juan Hu
June 2017, Chemical communications (Cambridge, England),
Chun-yang Zhang, and Juan Hu
October 2012, Analytical chemistry,
Chun-yang Zhang, and Juan Hu
April 2009, Analytical chemistry,
Chun-yang Zhang, and Juan Hu
October 2017, Chemical communications (Cambridge, England),
Chun-yang Zhang, and Juan Hu
November 2019, Sensors (Basel, Switzerland),
Chun-yang Zhang, and Juan Hu
March 2011, Chemical communications (Cambridge, England),
Chun-yang Zhang, and Juan Hu
January 2010, The Analyst,
Copied contents to your clipboard!