Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior. 2010

Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
School of Chemistry, Osaka University of Education, 4-698-1 Asahigaoka, Kashiwara-shi, Osaka, 582-8582, Japan. kandori@cc.osaka-kyoiku.ac.jp

The effects of modification of calcium hydroxyapatites (Hap; Ca10(PO4)6(OH)2) by trivalent metal ions (Al(III), La(III), and Fe(III)) on protein adsorption behavior were examined using bovine serum albumin (BSA; isoelectric point (iep) = 4.7 and molecular mass (M(s)) = 67,200 Da). The Al(III)-, La(III)-, and Fe(III)-substituted Hap particles were prepared by the coprecipitation method with different atomic ratios, metal/(Ca + metal), abbreviated as X(metal). The particles precipitated at X(metal) = 0 (original-Hap) were rod-like and 10 x 36 nm2 in size. The short, rod-like original-Hap particles were elongated upon adding metal ions up to X(metal) = 0.10, and the extent of the particle growth was in the order of La(III) < Al(III) << Fe(III). The crystallinity of the materials was slightly lowered by increasing X(metal) for all systems. The adsorption isotherms of BSA onto the Al(III)-, La(III)-, and Fe(III)-substituted Hap particles showed the Langmuirian type. The saturated amounts of adsorbed BSA (n(s)(BSA)) values were strongly dependent on X(metal) in each system. The n(s)(BSA) values for the Fe(III)-substituted Hap system were increased with an increase in X(Fe) (X(metal) value of Hap particles substituted with Fe(III)); the n(s)(BSA) value obtained at X(Fe) = 0.10 was 2.7-fold more than that for the original-Hap particle, though those for the La(III) system were decreased to ca. 1/5. On the other hand, the n(s)(BSA) values for the Al(III) system were decreased with substitution of small amounts of Al(III), showing a minimum point at X(Al) = 0.01, but they were increased again at X(Al) over 0.03. Since the concentrations of hetero metal ions dissolved from the particles exhibited extremely low values, the possibility of binder effects of trivalent cations dissolved from the particle surface for adsorbing BSA to trivalent-ion-substituted Hap particles was excluded. The increase of n(s)(BSA) by an increase in X(Fe) was explained by elongation of mean particle length along with the production of surface hydroxo ions, such as Fe(OH)2+ or Fe(OH)2+, to induce the hydrogen bond between the Fe(III)-substituted Hap surface and BSA molecules, though the number of original C sites established by Ca(II) atoms was reduced. In the case of La(III)-substituted Hap particles, the number of original C sites established by Ca(II) atoms was reduced by La(III) substitution but the mean particle length remained almost constant. Furthermore, surface hydroxo La(III) groups were absent. Therefore, the reduction of n(s)(BSA) was explained by both the unaltered mean particle length and their low surface hydrophilicity. The change of n(s)(BSA) values by X(Al) resembled that of the mean particle length. These results implied that both the mean particle length and surface hydrophilicity of Al(III)-, La(III)-, and Fe(III)-substituted Hap particles are determining factors of the adsorption amounts of BSA.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007811 Lanthanum The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions
D000535 Aluminum A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98. Aluminium,Aluminium-27,Aluminum-27,Aluminium 27,Aluminum 27
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D017886 Durapatite The mineral component of bones and teeth; it has been used therapeutically as a prosthetic aid and in the prevention and treatment of osteoporosis. Calcium Hydroxyapatite,Hydroxyapatite,Hydroxylapatite,Alveograf,Calcitite,Interpore-200,Interpore-500,Osprovit,Ossein-Hydroxyapatite Compound,Ossopan,Osteogen,Periograf,Hydroxyapatite, Calcium,Interpore 200,Interpore 500,Interpore200,Interpore500,Ossein Hydroxyapatite Compound

Related Publications

Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
February 2007, Langmuir : the ACS journal of surfaces and colloids,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
January 1998, Biological trace element research,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
February 2008, The journal of physical chemistry. B,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
August 2007, Colloids and surfaces. B, Biointerfaces,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
March 2020, Journal of hazardous materials,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
June 2007, Journal of colloid and interface science,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
April 1999, Journal of colloid and interface science,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
February 2017, Proteomes,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
August 1970, The Journal of biological chemistry,
Kazuhiko Kandori, and Satoko Toshima, and Masato Wakamura, and Masao Fukusumi, and Yoshiaki Morisada
November 2018, International journal of biological macromolecules,
Copied contents to your clipboard!