Effect of digital filtering of ABR on scorer variability. 1991

L G Spivak, and R L Malinoff
Department of Communicative Disorders, Hy Weinberg Center, Adelphi University, Garden City, New York 11530.

The utility of digital filtering for the purpose of improving waveform morphology and improving peak detection was investigated. Unfiltered (i.e., only standard analog filtering) and digitally filtered (i.e., analog plus post hoc digital filtering) ABRs from both young and elderly subjects were independently scored by eight experienced clinicians. Measures of intrascorer and interscorer variability were obtained for the absolute latencies of waves I, III, and V. Results suggest that digital filtering tends to increase the reliability of latency measurements when ABRs are characterized by poor morphology.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000162 Acoustics The branch of physics that deals with sound and sound waves. In medicine it is often applied in procedures in speech and hearing studies. With regard to the environment, it refers to the characteristics of a room, auditorium, theatre, building, etc. that determines the audibility or fidelity of sounds in it. (From Random House Unabridged Dictionary, 2d ed) Acoustic
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D015588 Observer Variation The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material). Bias, Observer,Interobserver Variation,Intraobserver Variation,Observer Bias,Inter-Observer Variability,Inter-Observer Variation,Interobserver Variability,Intra-Observer Variability,Intra-Observer Variation,Intraobserver Variability,Inter Observer Variability,Inter Observer Variation,Inter-Observer Variabilities,Inter-Observer Variations,Interobserver Variabilities,Interobserver Variations,Intra Observer Variability,Intra Observer Variation,Intra-Observer Variabilities,Intra-Observer Variations,Intraobserver Variabilities,Intraobserver Variations,Observer Variations,Variabilities, Inter-Observer,Variabilities, Interobserver,Variabilities, Intra-Observer,Variabilities, Intraobserver,Variability, Inter-Observer,Variability, Interobserver,Variability, Intra-Observer,Variability, Intraobserver,Variation, Inter-Observer,Variation, Interobserver,Variation, Intra-Observer,Variation, Intraobserver,Variation, Observer,Variations, Inter-Observer,Variations, Interobserver,Variations, Intra-Observer,Variations, Intraobserver,Variations, Observer
D016057 Evoked Potentials, Auditory, Brain Stem Electrical waves in the CEREBRAL CORTEX generated by BRAIN STEM structures in response to auditory click stimuli. These are found to be abnormal in many patients with CEREBELLOPONTINE ANGLE lesions, MULTIPLE SCLEROSIS, or other DEMYELINATING DISEASES. Acoustic Evoked Brain Stem Potentials,Auditory Brain Stem Evoked Responses,Brain Stem Auditory Evoked Potentials,Evoked Responses, Auditory, Brain Stem,Acoustic Evoked Brain Stem Potential,Acoustic Evoked Brainstem Potential,Acoustic Evoked Brainstem Potentials,Auditory Brain Stem Evoked Response,Auditory Brain Stem Response,Auditory Brain Stem Responses,Auditory Brainstem Evoked Response,Auditory Brainstem Evoked Responses,Auditory Brainstem Responses,Brain Stem Auditory Evoked Potential,Brainstem Auditory Evoked Potential,Brainstem Auditory Evoked Potentials,Evoked Potential, Auditory, Brainstem,Evoked Potentials, Auditory, Brainstem,Evoked Response, Auditory, Brain Stem,Evoked Response, Auditory, Brainstem,Evoked Responses, Auditory, Brainstem,Auditory Brainstem Response,Brainstem Response, Auditory,Brainstem Responses, Auditory,Response, Auditory Brainstem,Responses, Auditory Brainstem

Related Publications

L G Spivak, and R L Malinoff
February 1988, Ear and hearing,
L G Spivak, and R L Malinoff
October 1995, Ear and hearing,
L G Spivak, and R L Malinoff
January 1994, Acta oto-laryngologica. Supplementum,
L G Spivak, and R L Malinoff
April 1979, Computers and biomedical research, an international journal,
L G Spivak, and R L Malinoff
June 2016, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine,
L G Spivak, and R L Malinoff
January 2001, Clinical physiology (Oxford, England),
L G Spivak, and R L Malinoff
July 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
L G Spivak, and R L Malinoff
January 1993, Medical progress through technology,
L G Spivak, and R L Malinoff
January 1985, IEEE transactions on medical imaging,
Copied contents to your clipboard!