A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes. 1991

W A Boyle, and J M Nerbonne
Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.

To determine the types of voltage-gated K+ channels controlling action potential repolarization in atrial cells, we have characterized the properties of depolarization-activated K+ channels in isolated adult rat atrial myocytes using the whole cell patch-clamp recording technique. On membrane depolarization, Ca2(+)-independent outward K+ currents in these cells begin to activate at approximately -40mV. At all test potentials, the currents activate rapidly after a delay, and there is little or no decay of the peak outward current amplitude during brief (100 ms) depolarizations. In addition, the currents show little steady-state inactivation at membrane potentials negative to -60 mV. The currents are blocked effectively by 1-5 mM 4-aminopyridine but are relatively insensitive to extracellular tetraethylammonium at concentrations up to 50 mM. Based on the measured time- and voltage-dependent properties and the pharmacological sensitivity of the currents, we suggest that the depolarization-activated K+ channels underlying the macroscopic currents in adult rat atrial myocytes are distinct from those described previously in other myocardial preparations, including adult rat ventricular myocytes. Interestingly, the outward K+ currents characterized here in isolated adult rat atrial myocytes are remarkably similar to those of several recently described "delayed rectifier" K+ channel genes isolated from rat brain cDNA libraries and expressed in Xenopus oocytes, suggesting that similar K+ currents are likely present in cells of the mammalian central nervous system.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium

Related Publications

W A Boyle, and J M Nerbonne
January 2003, Progress in biophysics and molecular biology,
W A Boyle, and J M Nerbonne
January 1989, Pflugers Archiv : European journal of physiology,
W A Boyle, and J M Nerbonne
May 1999, The Journal of general physiology,
W A Boyle, and J M Nerbonne
December 1980, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!