Diabetes-associated alterations in volatile anesthetic actions on contractile response to norepinephrine in isolated mesenteric resistance arteries. 2010

Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University.

BACKGROUND Clinical concentrations of volatile anesthetics significantly influence contractile response to the sympathetic neurotransmitter norepinephrine although its precise mechanisms remain unclarified. In this study, we investigated its possible alterations in diabetes, as well as its underlying mechanisms. METHODS Isometric force was recorded in small mesenteric arteries from streptozotocin-induced diabetic and age-matched control rats. RESULTS The concentration-response curve for acetylcholine-induced endothelium-dependent relaxation was shifted to the right in diabetic arteries compared with controls. The concentration-response curve for norepinephrine-induced contraction was shifted to the left and upward by both endothelial denudation and diabetic induction. In the presence of endothelium, isoflurane or sevoflurane enhanced norepinephrine-induced contraction in control arteries but not in diabetic arteries; however, in its absence, both anesthetics identically inhibited norepinephrine-induced contraction in both groups. In control arteries, the isoflurane- or sevoflurane-induced enhancement was not affected by adrenomedullin22-52, calcitonin gene-related peptide8-37, 18beta-glycyrrhetinic acid, N-nitro l-arginine, ouabain, Ba, indomethacin, losartan, ketanserin, BQ-123, and BQ-788. CONCLUSIONS In diabetes, vascular responses to acetylcholine, norepinephrine, and volatile anesthetics are altered in mesenteric resistance arteries, presumably reflecting endothelial dysfunction and possibly underlying circulatory instability during administration of either anesthetic. Some endothelial mechanisms that are impaired in diabetes would be involved in the anesthetic-induced enhancement of norepinephrine-induced contraction. However, the vasoregulatory mechanism mediated by adrenomedullin, calcitonin gene-related peptide, myoendothelial gap junction, nitric oxide, endothelium-derived hyperpolarizing factor, cyclooxygenase products, angiotensin II, serotonin, or endothelin-1, all of which have been suggested to be impaired in diabetes, would not be involved in the enhancement.

UI MeSH Term Description Entries
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D008738 Methyl Ethers A group of compounds that contain the general formula R-OCH3. Ethers, Methyl
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000077149 Sevoflurane A non-explosive inhalation anesthetic used in the induction and maintenance of general anesthesia. It does not cause respiratory irritation and may also prevent PLATELET AGGREGATION. BAX 3084,Fluoromethyl Hexafluoroisopropyl Ether,Fluoromethyl-2,2,2-trifluoro-1-(trifluoromethyl)ethyl Ether,Sevorane,Ultane

Related Publications

Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
March 1995, Anesthesiology,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
November 1995, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
January 1982, The Journal of pharmacology and experimental therapeutics,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
May 2001, Anesthesiology,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
January 1997, The American journal of physiology,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
December 1991, Canadian journal of physiology and pharmacology,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
December 2003, Fundamental & clinical pharmacology,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
October 1990, Naunyn-Schmiedeberg's archives of pharmacology,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
March 1984, Prostaglandins,
Jun Yoshino, and Takashi Akata, and Kazuhiro Shirozu, and Kaoru Izumi, and Sumio Hoka
March 1992, General pharmacology,
Copied contents to your clipboard!