Thrombin-stimulated events in cultured vascular smooth-muscle cells. 1991

B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322.

Thrombin is present in high concentrations at sites of clots and may have important post-clotting effects on adjacent vascular tissue. This may be particularly important for vascular smooth-muscle cells (VSMC), whose growth and contractility are altered following atherosclerotic-associated thromboses. To study the cellular signal events by which thrombin exerts its actions, the effects of purified human alpha-thrombin were examined in cultured rat aortic VSMC. alpha-Thrombin stimulated a biphasic change in intracellular pH (pHi), causing an early rapid acidification, followed by a sustained alkalinization. The increase in pHi was dependent on extracellular Na+ and inhibited by 5'-(NN-dimethyl)amiloride, consistent with mediation by Na+/H+ exchange. alpha-Thrombin rapidly increased free intracellular [Ca2+] ([Ca2+]i). The increase in [Ca2+]i was secondary to activation of phospholipase C, as demonstrated by increases in InsP3 (226%) and InsP2 (387%) and decreases in polyphosphoinositides at 15 s. Expression of the mRNA for the proto-oncogene c-fos was induced by alpha-thrombin. Stimulation of c-fos mRNA was not dependent on alterations in pHi, but required a rise in [Ca2+]i. Despite many growth-related signals shared by alpha-thrombin with platelet-derived growth factor, alpha-thrombin failed to stimulate [3H]thymidine incorporation or cell division, although there was a maximal increase of 52% in protein synthesis. The data suggest that there are cellular signal events not activated by alpha-thrombin which are required for proliferation of these aortic VSMC.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
February 2000, Thrombosis research,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
March 1992, Rinsho byori. The Japanese journal of clinical pathology,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
November 1991, Thrombosis research,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
April 1989, Hypertension (Dallas, Tex. : 1979),
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
September 1995, Biological & pharmaceutical bulletin,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
September 2000, American journal of physiology. Heart and circulatory physiology,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
May 1988, Biochemical and biophysical research communications,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
October 1995, Circulation research,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
June 1997, Blood,
B C Berk, and M B Taubman, and K K Griendling, and E J Cragoe, and J W Fenton, and T A Brock
March 1997, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!