Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. 1991

P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
Section of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, New York 14853.

P/O ratios of rat liver mitochondria were measured with particular attention to systematic errors. Corrections for energy loss during oxidative phosphorylation were made by measurement of respiration as a function of mitochondrial membrane potential. The corrected values were close to 1, 0.5, and 1 at the three coupling sites, respectively. These values are consistent with recent measurements of mitochondrial proton transport.

UI MeSH Term Description Entries
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
August 1994, Biochemistry,
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
July 1986, European journal of biochemistry,
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
August 1968, Archives of biochemistry and biophysics,
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
August 1991, Archives of biochemistry and biophysics,
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
December 1967, Angewandte Chemie (International ed. in English),
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
August 1968, Archives of biochemistry and biophysics,
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
July 2010, The Journal of biological chemistry,
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
March 1984, Journal of theoretical biology,
P C Hinkle, and M A Kumar, and A Resetar, and D L Harris
July 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!