Early physiologic responses to hemorrhagic hypotension. 2010

Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
Department of Physiology and Biophysic, Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University Health System, Richmond, VA 23298-0551, USA. itorres@vcu.edu

The identification of early indicators of hemorrhagic hypotension (HH) severity may support early therapeutic approaches and bring insights into possible mechanistic implications. However, few systematic investigations of physiologic variables during early stages of hemorrhage are available. We hypothesized that, in certain subjects, early physiologic responses to blood loss are associated with the ability to survive hemorrhage levels that are lethal to subjects that do not present the same responses. Therefore, we examine the relevance of specific systemic changes during and after the bleeding phase of HH. Stepwise hemorrhage, representing prehospital situations, was performed in 44 rats, and measurements were made after each step. Heart and respiratory rates, arterial and venous blood pressures, gases, acid-base status, glucose, lactate, electrolytes, hemoglobin, O(2) saturation, tidal volume, and minute volume were measured before, during, and after bleeding 40% of the total blood volume. Fifty percent of rats survived 100 min (survivors, S) or longer; others were considered nonsurvivors (NS). Our findings were as follows: (1) S and NS subjected to a similar hemorrhage challenge showed significantly different responses during nonlethal levels of bleeding; (2) survivors showed higher blood pressure and ventilation than NS; (3) although pH was lower in NS at later stages, changes in bicarbonate and base excess occurred already during the hemorrhage phase and were higher in NS; and (4) plasma K(+) levels and glucose extraction were higher in NS. We conclude that cardiorespiratory and metabolic responses, essential for the survival at HH, can differentiate between S and NS even before a lethal bleeding was reached.

UI MeSH Term Description Entries
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D008297 Male Males
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
May 1949, The American journal of physiology,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
December 1991, Western journal of nursing research,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
November 1974, Investigative urology,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
January 1994, Biology of the neonate,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
October 1991, Anesthesiology,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
January 1986, Circulatory shock,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
January 2000, Clinical hemorheology and microcirculation,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
February 1972, The Journal of trauma,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
March 1975, The American journal of physiology,
Ivo P Torres Filho, and Luciana N Torres, and Roland N Pittman
August 1986, The American journal of physiology,
Copied contents to your clipboard!