Interleukin-4 enhances anti-IgM stimulation of B cells by improving cell viability and by increasing the sensitivity of B cells to the anti-IgM signal. 1991

P D Hodgkin, and N F Go, and J E Cupp, and M Howard
DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304.

The lymphokine IL-4 is a potent enhancer of anti-IgM-induced B cell proliferation. Although the mechanism of this enhancement is not known, a commonly held view suggests that IL-4 acts together with anti-IgM as a costimulating factor for the activation of a subpopulation of B cells. To evaluate this hypothesis we examined the effect of IL-4 on the proportion of B cells stimulated to divide by different doses of anti-IgM using flow cytometry in combination with measurements of tritiated-thymidine incorporation. The results suggest a novel and surprisingly simple model for the mode of action of IL-4. Our analysis revealed that at high saturating anti-IgM concentrations, the proportion of live B cells which enter into S phase of the cell cycle is the same (approximately 65%) for cells cultured with or without IL-4. Cultures containing IL-4, however, exhibit a twofold increase in thymidine uptake over cultures without IL-4. This increase can be explained completely by the ability of IL-4 to enhance the viability of small dense B cells over the first 24 hr from approximately 50 to 90% of the starting cell number. Normalizing the maximum response levels obtained with and without IL-4 reveals that B cells incubated with IL-4 exhibit a 10-fold decrease in the concentration of anti-IgM required to stimulate the half-maximum proliferation level. Furthermore, evaluation of the number of cells in S phase by flow cytometry and analysis of the kinetics of cell proliferation revealed that the increased response effected by IL-4 at lower anti-IgM concentrations was due to a greater number of proliferating B cells rather than the same number of cells undergoing a faster division rate. We also found a highly nonlinear relationship between B cell number and proliferative response, implying a requirement for an additional, cell cooperation-mediated, activating signal for maximum B cell proliferation. IL-4 enhanced proliferation by the same proportion at all cell concentrations indicating that it does not replace or alter this requirement for cell cooperation. Taken together these results suggest that anti-IgM in combination with a second unidentified cell-cooperation-dependent signal leads to proliferation of up to 65% of small resting B cells. IL-4 does not provide an essential activation signal but serves to raise the sensitivity of B cells to the anti-IgM-generated signal.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003703 Demecolcine An alkaloid isolated from Colchicum autumnale L. and used as an antineoplastic. Colcemid,Colcemide,Colchamine,Demecolcine, (+-)-Isomer
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000888 Antibodies, Anti-Idiotypic Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies. Anti-Antibodies,Anti-Idiotype Antibodies,Antibodies, Internal Image,Antigamma Globulin Antibodies,Antiglobulins,Anti Antibodies,Anti-gamma Globulin Antibodies,Anti Idiotype Antibodies,Anti gamma Globulin Antibodies,Anti-Idiotypic Antibodies,Antibodies, Anti,Antibodies, Anti Idiotypic,Antibodies, Anti-Idiotype,Antibodies, Anti-gamma Globulin,Antibodies, Antigamma Globulin,Globulin Antibodies, Anti-gamma,Globulin Antibodies, Antigamma,Image Antibodies, Internal,Internal Image Antibodies

Related Publications

P D Hodgkin, and N F Go, and J E Cupp, and M Howard
May 1989, Cellular immunology,
P D Hodgkin, and N F Go, and J E Cupp, and M Howard
December 1979, Transplantation proceedings,
P D Hodgkin, and N F Go, and J E Cupp, and M Howard
February 1979, Journal of immunology (Baltimore, Md. : 1950),
P D Hodgkin, and N F Go, and J E Cupp, and M Howard
April 2011, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico,
P D Hodgkin, and N F Go, and J E Cupp, and M Howard
January 2022, Biological & pharmaceutical bulletin,
P D Hodgkin, and N F Go, and J E Cupp, and M Howard
August 1990, Clinical immunology and immunopathology,
P D Hodgkin, and N F Go, and J E Cupp, and M Howard
October 2012, Scandinavian journal of immunology,
Copied contents to your clipboard!