Expression of rat liver vitamin D3 25-hydroxylase cDNA in Saccharomyces cerevisiae. 1991

M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
Biotechnology Laboratory, Takarazuka Research Center, Sumitomo Chemical Co., Hyogo, Japan.

The cDNA coding for the precursor protein of rat liver mitochondrial vitamin D3 25-hydroxylase, cytochrome P450LMT25, was expressed under the control of the yeast alcohol dehydrogenase I promoter and terminator in Saccharomyces cerevisiae AH22 cells. The transformed yeast cells produced a P450LMT25 protein with an almost similar apparent molecular weight as compared with that of the authentic mature enzyme. The expression level of the P450LMT25 hemoprotein was about 5 x 10(4) molecules per cell as determined by reduced CO-difference spectra. The mitochondrial fraction prepared from the transformed yeast cells exhibited both 25-hydroxylase activity toward 1 alpha-hydroxyvitamin D3 and 27-hydroxylase activity toward 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol in a reconstituted system containing bovine adrenodoxin and NADPH-adrenodoxin reductase.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
March 1990, FEBS letters,
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
December 1997, Biochemical and biophysical research communications,
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
November 1997, Proceedings of the National Academy of Sciences of the United States of America,
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
October 1986, Archives of biochemistry and biophysics,
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
May 1988, Journal of biochemistry,
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
June 1980, The Journal of biological chemistry,
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
June 1985, DNA (Mary Ann Liebert, Inc.),
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
September 1984, The Journal of biological chemistry,
M Akiyoshi-Shibata, and E Usui, and T Sakaki, and Y Yabusaki, and M Noshiro, and K Okuda, and H Ohkawa
January 1991, FEBS letters,
Copied contents to your clipboard!