Serotonergic projection from nucleus raphe pallidus to rostral ventrolateral medulla modulates cardiovascular reflex responses during acupuncture. 2010

Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
Susan Samueli Center for Integrative Medicine, Department of Medicine, Medical Science 1 C240, School of Medicine, University of California, Irvine, CA 92697-4075, USA.

We have demonstrated that stimulation of somatic afferents during electroacupuncture (EA) inhibits sympathoexcitatory cardiovascular rostral ventrolateral medulla (rVLM) neurons and reflex responses. Furthermore, EA at P5-P6 acupoints over the median nerve on the forelimb activate serotonin (5-HT)-containing neurons in the nucleus raphe pallidus (NRP). The present study, therefore, examined the role of the NRP and its synaptic input to neurons in the rVLM during the modulatory influence of EA. Since serotonergic neurons in the NRP project to the rVLM, we hypothesized that the NRP facilitates EA inhibition of the cardiovascular sympathoexcitatory reflex response through activation of 5-HT1A receptors in the rVLM. Animals were anesthetized and ventilated, and heart rate and blood pressure were monitored. We then inserted microinjection and recording electrodes in the rVLM and NRP. Application of bradykinin (10 microg/ml) on the gallbladder every 10 min induced consistent excitatory cardiovascular reflex responses. Stimulation with EA at P5-P6 acupoints reduced the increase in blood pressure from 41+/-4 to 22+/-4 mmHg for more than 70 min. Inactivation of NRP with 50 nl of kainic acid (1 mM) reversed the EA-related inhibition of the cardiovascular reflex response. Similarly, blockade of 5-HT1A receptors with the antagonist WAY-100635 (1 mM, 75 nl) microinjected into the rVLM reversed the EA-evoked inhibition. In the absence of EA, NRP microinjection of dl-homocysteic acid (4 nM, 50 nl), to mimic EA, reduced the cardiovascular and rVLM neuronal excitatory reflex response during stimulation of the gallbladder and splanchnic nerve, respectively. Blockade of 5-HT1A receptors in the rVLM reversed the NRP dl-homocysteic acid inhibition of the cardiovascular and neuronal reflex responses. Thus activation of the NRP, through a mechanism involving serotonergic neurons and 5-HT1A receptors in the rVLM during somatic stimulation with EA, attenuates sympathoexcitatory cardiovascular reflexes.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg

Related Publications

Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
April 1999, Brain research,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
August 1993, Neuroscience,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
April 2019, Brain research,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
February 2006, The Journal of comparative neurology,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
June 1999, The American journal of physiology,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
December 1985, The Journal of comparative neurology,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
October 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
September 2000, Neuroscience letters,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
May 1990, Brain research,
Ali Moazzami, and Stephanie C Tjen-A-Looi, and Zhi-Ling Guo, and John C Longhurst
August 1998, Journal of the autonomic nervous system,
Copied contents to your clipboard!