Cancer stem cells from colorectal cancer-derived cell lines. 2010

Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.

Cancer stem cells (CSCs) are the subpopulation of cells within a tumor that can self-renew, differentiate into multiple lineages, and drive tumor growth. Here we describe a two-pronged approach for the identification and characterization of CSCs from colorectal cancer cell lines, using a Matrigel-based differentiation assay, and cell surface markers CD44 and CD24. About 20 to 30% of cells from the SW1222 cell line form megacolonies in Matrigel that have complex 3D structures resembling colonic crypts. The megacolonies' capacity to self-renew in vitro is direct evidence that they contain the CSCs. Furthermore, just 200 cells from SW1222 megacolonies initiate tumors in NOD/SCID mice. We also showed that CD44(+)CD24(+) cells enriched for colorectal CSCs in the HT29 and SW1222 cell lines, which can self-renew and reform all four CD44/CD24 subpopulations, are the most clonogenic in vitro and can initiate tumors in vivo. A single SW1222 CD44(+)CD24(+) CSC, when grown in Matrigel, can form large megacolonies that differentiate into enterocyte, enteroendocrine, and goblet cell lineages. The HCT116 line does not differentiate or express CDX1, nor does it contain subpopulations of cells with greater tumor-forming capacity, suggesting that HCT116 contains mainly CSCs. However, forced expression of CDX1 in HCT116 leads to reduced clonogenicity and production of differentiating crypt-containing colonies, which can explain the selection for reduced CDX1 expression in many colorectal cancers. In summary, colorectal cancer cell lines contain subpopulations of CSCs, characterized by their cell surface markers and colony morphology, which can self-renew and differentiate into multiple lineages.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014411 Neoplastic Stem Cells Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS. Cancer Stem Cells,Colony-Forming Units, Neoplastic,Stem Cells, Neoplastic,Tumor Stem Cells,Neoplastic Colony-Forming Units,Tumor Initiating Cells,Cancer Stem Cell,Cell, Cancer Stem,Cell, Neoplastic Stem,Cell, Tumor Initiating,Cell, Tumor Stem,Cells, Cancer Stem,Cells, Neoplastic Stem,Cells, Tumor Initiating,Cells, Tumor Stem,Colony Forming Units, Neoplastic,Colony-Forming Unit, Neoplastic,Initiating Cell, Tumor,Initiating Cells, Tumor,Neoplastic Colony Forming Units,Neoplastic Colony-Forming Unit,Neoplastic Stem Cell,Stem Cell, Cancer,Stem Cell, Neoplastic,Stem Cell, Tumor,Stem Cells, Cancer,Stem Cells, Tumor,Tumor Initiating Cell,Tumor Stem Cell,Unit, Neoplastic Colony-Forming,Units, Neoplastic Colony-Forming
D015179 Colorectal Neoplasms Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI. Colorectal Cancer,Colorectal Carcinoma,Colorectal Tumors,Neoplasms, Colorectal,Cancer, Colorectal,Cancers, Colorectal,Carcinoma, Colorectal,Carcinomas, Colorectal,Colorectal Cancers,Colorectal Carcinomas,Colorectal Neoplasm,Colorectal Tumor,Neoplasm, Colorectal,Tumor, Colorectal,Tumors, Colorectal

Related Publications

Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
June 2010, Stem cells (Dayton, Ohio),
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
April 2010, Cell cycle (Georgetown, Tex.),
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
January 2016, Journal of biomechanics,
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
June 2019, Veterinary and comparative oncology,
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
December 2007, Science (New York, N.Y.),
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
February 2018, International journal of oncology,
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
January 2012, BMC cancer,
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
February 2012, Analytical chemistry,
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
December 2005, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Trevor M Yeung, and Shaan C Gandhi, and Jennifer L Wilding, and Ruth Muschel, and Walter F Bodmer
January 2014, Molecular biology reports,
Copied contents to your clipboard!