Histone modification levels are predictive for gene expression. 2010

Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
Max-Planck-Institut für Molekulare Genetik, Department of Computational Molecular Biology, Ihnestrasse 73, 14195 Berlin, Germany.

Histones are frequently decorated with covalent modifications. These histone modifications are thought to be involved in various chromatin-dependent processes including transcription. To elucidate the relationship between histone modifications and transcription, we derived quantitative models to predict the expression level of genes from histone modification levels. We found that histone modification levels and gene expression are very well correlated. Moreover, we show that only a small number of histone modifications are necessary to accurately predict gene expression. We show that different sets of histone modifications are necessary to predict gene expression driven by high CpG content promoters (HCPs) or low CpG content promoters (LCPs). Quantitative models involving H3K4me3 and H3K79me1 are the most predictive of the expression levels in LCPs, whereas HCPs require H3K27ac and H4K20me1. Finally, we show that the connections between histone modifications and gene expression seem to be general, as we were able to predict gene expression levels of one cell type using a model trained on another one.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D018899 CpG Islands Areas of increased density of the dinucleotide sequence cytosine--phosphate diester--guanine. They form stretches of DNA several hundred to several thousand base pairs long. In humans there are about 45,000 CpG islands, mostly found at the 5' ends of genes. They are unmethylated except for those on the inactive X chromosome and some associated with imprinted genes. CpG Clusters,CpG-Rich Islands,Cluster, CpG,Clusters, CpG,CpG Cluster,CpG Island,CpG Rich Islands,CpG-Rich Island,Island, CpG,Island, CpG-Rich,Islands, CpG,Islands, CpG-Rich
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational

Related Publications

Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
November 2012, Biochemical and biophysical research communications,
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
May 2011, BMC bioinformatics,
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
April 2011, Genetics,
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
January 2011, Nucleic acids research,
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
January 2014, Methods in molecular biology (Clifton, N.J.),
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
January 2020, IEEE/ACM transactions on computational biology and bioinformatics,
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
January 2010, Experimental biology and medicine (Maywood, N.J.),
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
May 2020, Plant biology (Stuttgart, Germany),
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
August 2020, Clinical epigenetics,
Rosa Karlić, and Ho-Ryun Chung, and Julia Lasserre, and Kristian Vlahovicek, and Martin Vingron
January 2004, Methods in enzymology,
Copied contents to your clipboard!