c-Cbl promotes T cell receptor-induced thymocyte apoptosis by activating the phosphatidylinositol 3-kinase/Akt pathway. 2010

Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
School of Pathology and Laboratory Medicine, University of Western Australia, Crawley 6009,Western Australia.

The ability of thymocytes to assess T cell receptor (TCR) signaling strength and initiate the appropriate downstream response is crucial for determining their fate. We have previously shown that a c-Cbl RING finger mutant knock-in mouse, in which the E3 ubiquitin ligase activity of c-Cbl is inactivated, is highly sensitive to TCR-induced death signals that cause thymic deletion. This high intensity signal involves the enhanced tyrosine phosphorylation of the mutant c-Cbl protein promoting a marked increase in the activation of Akt. Here we show that this high intensity signal in c-Cbl RING finger mutant thymocytes also promotes the enhanced induction of two mediators of TCR-directed thymocyte apoptosis, Nur77 and the pro-apoptotic Bcl-2 family member, Bim. In contrast, a knock-in mouse harboring a mutation at Tyr-737, the site in c-Cbl that activates phosphatidylinositol 3-kinase, shows reduced TCR-mediated responses including suppression of Akt activation, a reduced induction of Nur77 and Bim, and greater resistance to thymocyte death. These findings identify tyrosine-phosphorylated c-Cbl as a critical sensor of TCR signal strength that regulates the engagement of death-promoting signals.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000072224 Bcl-2-Like Protein 11 A BCL-2-like protein that has a C-terminal BCL-2 homology (BH3) domain and forms heterodimers with other BCL-2 FAMILY PROTEINS. It is a strong inducer of APOPTOSIS and ANOIKIS; several isoforms are expressed (BimEL, Bim L, Bim-alpha, Bim-s; and Bim-gamma) that have different potencies for inducing apoptosis. BCL2L11 Protein,BIM Protein,Bcl-2-Binding Protein, BIM,Bcl-2-Interacting Mediator of Cell Death,11, Bcl-2-Like Protein,BIM Bcl-2-Binding Protein,Bcl 2 Binding Protein, BIM,Bcl 2 Interacting Mediator of Cell Death,Bcl 2 Like Protein 11,Protein 11, Bcl-2-Like,Protein, BCL2L11,Protein, BIM,Protein, BIM Bcl-2-Binding
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
September 2008, World journal of gastroenterology,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
December 2019, Aging,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
January 2009, American journal of nephrology,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
January 2008, The Journal of biological chemistry,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
September 2000, Cancer research,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
January 2004, The Journal of biological chemistry,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
December 2019, Molecular and cellular biology,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
July 2005, Journal of the American Society of Nephrology : JASN,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
October 2006, Cancer science,
Christine B F Thien, and Samantha A Dagger, and James H Steer, and Frank Koentgen, and Elisa S Jansen, and Clare L Scott, and Wallace Y Langdon
September 2007, Journal of leukocyte biology,
Copied contents to your clipboard!