HES1 and HES5 are dispensable for cartilage and endochondral bone formation. 2010

C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
Institute for Laboratory Medicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden. camilla.karlsson@medic.gu.se

Notch signalling, via its downstream mediators HES1 and HES5, regulates development of several different tissues. In vitro studies suggest that these genes are also involved in chondrogenesis and endochondral bone formation. In order to investigate the importance of HES1 and HES5 for these developmental processes, mice lacking chondrogenic expression of HES1 and HES5 were constructed by interbreeding HES5(-/-) mice homozygous for the floxed HES1 allele (HES1(flox/flox)) with COL2A1-Cre transgenic mice, creating conditional HES1;HES5 double mutant mice. The formation of cartilage and endochondral bone was studied in these mice using histological and immunohistochemical stainings, including Alcian Blue van Gieson, Safranin-O, modified Mallory Aniline Blue, tartrate-resistant acid phosphatase and collagen type II stainings. The mice were also studied using several different morphometrical analyses and the differentiation potential of the chondrocytes was evaluated in vitro. Unexpectedly, the conditional HES1;HES5 double mutant mice did not display impaired development of cartilage or endochondral bone. Lack of altered phenotype in the conditional HES1;HES5 double mutant mice can be explained either by the HES1 and HES5 genes not being involved in cartilage and endochondral bone development or by functional redundancy between the genes belonging to the family of HES genes: that is, disruption of one gene could be compensated for by the activity of another. Our results further shed light on the compensatory reserves available during the developing cartilage and bone.

UI MeSH Term Description Entries
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000072056 Transcription Factor HES-1 A basic-helix-loop-helix transcription factor that functions as a transcriptional repressor for genes transcribed by bHLH proteins. For example, it may negatively regulate MYOGENESIS by inhibiting MyoD1 and ASH1 proteins. It is also required for the stability of FANCONI ANEMIA COMPLEMENTATION GROUP PROTEINS and their localization to the cell nucleus in response to DNA DAMAGE. Hairy and Enhancer of Split 1 Protein,Hairy-Like Transcription Factor,HES-1, Transcription Factor,Hairy Like Transcription Factor,Transcription Factor HES 1,Transcription Factor, Hairy-Like
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
November 2015, Brain research,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
April 1987, The Journal of nutrition,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
January 2015, Vitamins and hormones,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
March 2012, Journal of cell science,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
January 2014, Biomedical research (Tokyo, Japan),
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
June 1999, Nature medicine,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
December 1990, Clinical orthopaedics and related research,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
April 2005, Journal of anatomy,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
April 1999, The EMBO journal,
C Karlsson, and C Brantsing, and R Kageyama, and A Lindahl
January 2015, Biomaterials,
Copied contents to your clipboard!