Keeping the balance between immune tolerance and pathogen immunity with endogenous neuropeptides. 2010

Elena Gonzalez-Rey
Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain. elenag@ipb.csic.es

Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and hormones that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. We will examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T cell effectors. We will also examine the role of some of these neuropeptides as mediators of innate defense acting as natural antimicrobial peptides. Both anti-inflammatory and pro-resolving neuropeptides have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. From a physiological point of view, neuropeptides play a critical role in the innate-adaptive immune cross talk that allows survival.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001327 Autoimmune Diseases Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides. Autoimmune Disease,Disease, Autoimmune,Diseases, Autoimmune
D015213 Neuroimmunomodulation The biochemical and electrophysiological interactions between the NERVOUS SYSTEM and IMMUNE SYSTEM. Cholinergic Anti-inflammatory Pathway,Neuro-immune Axis,Neuro-immune Communication,Neuro-immune Interactions,Neuro-immunomodulation,Neuroimmune Axis,Neuroimmune Communication,Neuroimmune Interactions,Neuroimmune Processes,Vagal Anti-inflammatory Pathway,Vagal-immune Interactions,Neuroimmune Mechanisms,Neuroimmune Process,Anti-inflammatory Pathway, Cholinergic,Anti-inflammatory Pathway, Vagal,Cholinergic Anti inflammatory Pathway,Cholinergic Anti-inflammatory Pathways,Communication, Neuro-immune,Communication, Neuroimmune,Interaction, Neuro-immune,Interaction, Neuroimmune,Mechanism, Neuroimmune,Neuro immune Axis,Neuro immune Communication,Neuro immune Interactions,Neuro immunomodulation,Neuro-immune Communications,Neuro-immune Interaction,Neuroimmune Communications,Neuroimmune Interaction,Neuroimmune Mechanism,Process, Neuroimmune,Vagal Anti inflammatory Pathway,Vagal Anti-inflammatory Pathways,Vagal immune Interactions,Vagal-immune Interaction
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

Elena Gonzalez-Rey
January 1997, Ciba Foundation symposium,
Elena Gonzalez-Rey
January 1984, Terapevticheskii arkhiv,
Elena Gonzalez-Rey
March 2009, Cellular and molecular life sciences : CMLS,
Elena Gonzalez-Rey
November 2016, Current drug metabolism,
Elena Gonzalez-Rey
February 2008, Current opinion in genetics & development,
Elena Gonzalez-Rey
February 2013, Mayo Clinic health letter (English ed.),
Elena Gonzalez-Rey
January 1970, Allergie und Asthma,
Copied contents to your clipboard!