Muscarinic cholinergic stimulation of exogenous phosphatidylinositol hydrolysis is regulated by guanine nucleotides in rabbit brain cortical membranes. 1991

H R Carter, and J N Fain
Department of Biochemistry, University of Tennessee, Memphis 38163.

Rabbit brain cortical membranes, which have been extracted with 2 M KCl, hydrolyze exogenously added [3H]phosphatidylinositol [( 3H]PI) in a guanine nucleotide- and carbachol-dependent manner. Both oxotremorine-M and carbachol are full agonists with EC50 values of 8 and 73 microM, respectively. Pirenzepine and atropine inhibit carbachol-stimulated [3H]PI hydrolysis. The hydrolysis-resistant guanine nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) is the most potent in supporting carbachol-stimulated hydrolysis of PI. There is no effect of carbachol in the absence of guanine nucleotides or in the presence of 100 microM adenosine 5'-O-(3-thiotriphosphate), adenosine-5'-(beta, gamma-imido)triphosphate, or sodium pyrophosphate. Guanylyl-5'-(beta,gamma-imido)triphosphate [Gpp(NH)p] in the presence of carbachol also stimulates PI hydrolysis although much less than that seen with GTP gamma S. GDP and Gpp(NH)p are potent antagonists of the GTP gamma S-dependent carbachol response. Optimal stimulation by carbachol and GTP gamma S was observed at 0.3-1 microM free Ca2+ and 6 mM MgCl2. Limited trypsinization resulted in loss of receptor-regulated PI breakdown and a slight decrease in basal activity. These results demonstrate that phospholipase C hydrolysis of exogenous PI by rabbit cortical membranes may be stimulated by carbachol in a guanine nucleotide-dependent manner.

UI MeSH Term Description Entries
D008297 Male Males
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate

Related Publications

H R Carter, and J N Fain
February 1980, The Journal of biological chemistry,
H R Carter, and J N Fain
June 1979, European journal of pharmacology,
H R Carter, and J N Fain
February 1983, Journal of immunology (Baltimore, Md. : 1950),
H R Carter, and J N Fain
September 1987, Biochemical and biophysical research communications,
H R Carter, and J N Fain
May 1980, Biochemical and biophysical research communications,
H R Carter, and J N Fain
December 1990, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!