Na(x)-deficient mice show normal vasopressin response to dehydration. 2010

Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
Division of Molecular Neurobiology, National Institute for Basic Biology, and School of Life Science, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Aichi, Japan.

In dehydrated animals, the antidiuretic hormone vasopressin (VP) is released from the nerve terminals of magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) into the systemic circulation at the posterior pituitary. Increases in sodium (Na+)-level and osmolality in body fluids upon dehydration are reportedly sensed by a Na+-sensor and/or an osmosensor, respectively. However, it is still unknown whether both are involved in the regulation of production and/or release of VP. Na(x) is the cerebral Na+-level sensor and Na(x)-knockout mice do not stop ingesting salt even when dehydrated. Here we examined VP production/release in Na(x)-knockout mice, and found that they are normal in the VP response to dehydration or intraperitoneal-administration with hypertonic saline. In situ hybridization using an intron-specific probe showed that VP gene expression in the SON did not differ from wild-type mice when dehydrated. Also, there was no significant difference in the activity of subfornical organ neurons projecting to the SON between the two genotypes when stimulated by water deprivation. Furthermore, Na(x)-knockout mice showed a normal response in urine excretion to dehydration. All these results indicate that the information of Na+-level increase detected by Na(x) does not contribute to the control of VP production/release.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D003681 Dehydration The condition that results from excessive loss of water from a living organism. Water Stress,Stress, Water
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012462 Saline Solution, Hypertonic Hypertonic sodium chloride solution. A solution having an osmotic pressure greater than that of physiologic salt solution (0.9 g NaCl in 100 ml purified water). Hypertonic Saline Solution,Hypertonic Solution, Saline,Sodium Chloride Solution, Hypertonic,Hypertonic Saline Solutions,Hypertonic Solutions, Saline,Saline Solutions, Hypertonic,Sodium Chloride Solutions, Hypertonic,Saline Hypertonic Solution,Saline Hypertonic Solutions,Solution, Hypertonic Saline,Solution, Saline Hypertonic,Solutions, Hypertonic Saline,Solutions, Saline Hypertonic
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013356 Subfornical Organ A structure, situated close to the intraventricular foramen, which induces DRINKING BEHAVIOR after stimulation with ANGIOTENSIN II. Organum Subfornicale,Organ, Subfornical,Organs, Subfornical,Organum Subfornicales,Subfornical Organs,Subfornicale, Organum,Subfornicales, Organum
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus

Related Publications

Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
September 1989, Journal of the American Geriatrics Society,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
January 1975, Journal of animal science,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
December 2008, Brain research,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
January 1985, Journal of applied physiology (Bethesda, Md. : 1985),
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
January 1981, Neurobiology of aging,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
January 2006, Molecular and cellular biology,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
April 1996, The Journal of experimental medicine,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
October 1999, Regulatory peptides,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
December 1992, American journal of obstetrics and gynecology,
Ayano Nagakura, and Takeshi Y Hiyama, and Masaharu Noda
April 1982, Acta endocrinologica,
Copied contents to your clipboard!