Inhibition of NGF-induced neurite outgrowth of rat pheochromocytoma cells (PC12) following administration of dioxyamphetamine. 2010

S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
Institute of Pathology, Division of Neuropathology, Technical University, Ismaninger Strasse 22, D-81675 Munich, Germany. saida.zoubaa@lrz.tu-muenchen.de

Amphetamine analogs are known to induce not only neurotoxicity at serotonergic axon terminals but also neocortical neuronal degeneration. However, a much less studied aspect involves the impact of amphetamine exposure on neuronal development. The present study investigated whether pretreatment of PC12 cells with dioxyamphetamine (DA) alters differentiation of PC12 cells by NGF and, if so, which components of the Ras/Raf/MEK/ERK pathway known to be involved in the differentiation response to NGF are particularly affected. Though exposure of PC12 cells to DA 1h prior to NGF treatment resulted in apopotosis, several PC12 cells survived. However, neurite outgrowth of these NGF-responsive cells was repressed. Immunoblots of whole cell extracts revealed a strong induction rather than inhibition of ERK phosphorylation up to 48h after DA/NGF treatment. Our results indicate that NGF-mediated neurite outgrowth was inhibited by pretreatment with DA, and this blockage of NGF-induced neuritogenesis was not due to an inhibition of ERK phosphorylation.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000662 Amphetamines Analogs or derivatives of AMPHETAMINE. Many are sympathomimetics and central nervous system stimulators causing excitation, vasopressin, bronchodilation, and to varying degrees, anorexia, analepsis, nasal decongestion, and some smooth muscle relaxation.
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite
D016716 PC12 Cells A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation. Pheochromocytoma Cell Line,Cell Line, Pheochromocytoma,Cell Lines, Pheochromocytoma,PC12 Cell,Pheochromocytoma Cell Lines
D048049 Extracellular Signal-Regulated MAP Kinases A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS. ERK MAP Kinase,ERK MAP Kinases,Extracellular Signal-Regulated Kinase,Extracellular Signal-Regulated Kinases,Extracellular Signal-Regulated MAP Kinase,MAP Kinases, Extracellular Signal-Regulated,Extracellular Signal Regulated Kinase,Extracellular Signal Regulated Kinases,Extracellular Signal Regulated MAP Kinase,Extracellular Signal Regulated MAP Kinases,Kinase, ERK MAP,Kinase, Extracellular Signal-Regulated,Kinases, Extracellular Signal-Regulated,MAP Kinase, ERK,MAP Kinases, Extracellular Signal Regulated,Signal-Regulated Kinase, Extracellular
D048490 raf Kinases A family of closely-related serine-threonine kinases that were originally identified as the cellular homologs of the retrovirus-derived V-RAF KINASES. They are MAP kinase kinase kinases that play important roles in SIGNAL TRANSDUCTION. MIL-RAF Proteins,mil-raf Protein Kinases,raf Kinase,raf MAP Kinase Kinase Kinases,Proto-Oncogene Proteins raf,raf Proto-Oncogene Proteins,raf Serine-Theonine Protein Kinases,Kinase, raf,Kinases, mil-raf Protein,Kinases, raf,MIL RAF Proteins,Protein Kinases, mil-raf,Proteins raf, Proto-Oncogene,Proto Oncogene Proteins raf,Proto-Oncogene Proteins, raf,mil raf Protein Kinases,raf Proto Oncogene Proteins,raf Serine Theonine Protein Kinases

Related Publications

S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
October 1999, The Journal of antibiotics,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
April 2004, Molecules and cells,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
November 2005, Neuroscience letters,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
April 2007, Biological & pharmaceutical bulletin,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
September 1999, Journal of neuroscience research,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
June 1995, The European journal of neuroscience,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
January 2013, European journal of cell biology,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
November 1992, Neuroreport,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
May 1994, Toxicon : official journal of the International Society on Toxinology,
S Zoubaa, and R Konrad, and G Piontek, and J Schlegel
June 1993, Journal of neurochemistry,
Copied contents to your clipboard!