Temporal dynamics of myelination in the zebrafish spinal cord. 2010

Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
MRC Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.

Knowledge of the precise timing of myelination is critical to the success of zebrafish-based in vivo screening strategies for potential remyelination therapies. This study provides a systematic review of the timing of myelination in the zebrafish spinal cord and a critique of techniques by which it may be accurately assessed. The onset of myelination was found to be 3 days postfertilization (d.p.f.); earlier than previously reported. This coincided with the dorsal migration and differentiation of oligodendrocytes and the expression of myelin basic protein (Mbp) transcripts and protein. Our data suggests that immunohistochemistry with zebrafish-specific anti-Mbp from 3 d.p.f. is the optimal histological method for myelin visualization, while quantification of myelination is more reliably achieved by quantitative polymerase chain reaction (qPCR) for mbp from 5 d.p.f.. Transgenic fluorescent lines such as olig2:EGFP can be used to assess oligodendrocyte cell number at 3 d.p.f. and the development of new, more specific lines may enable real time visualization of myelin itself. Quantitative ultrastructural analysis revealed that the myelination of zebrafish axons is regulated according to axonal growth and not absolute axonal size. This study confirms the use of the zebrafish larvae as a versatile and efficient in vivo model of myelination and provides a platform on which future myelination screening studies can be based.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra

Related Publications

Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
January 2019, Methods in molecular biology (Clifton, N.J.),
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
January 2019, Developmental neuroscience,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
January 1999, Folia neuropathologica,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
June 2024, BMC musculoskeletal disorders,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
December 2012, ChemMedChem,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
January 2013, Cell adhesion & migration,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
May 2014, Journal of visualized experiments : JoVE,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
January 1980, Acta neuropathologica,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
January 1974, Rivista di biologia,
Clare E Buckley, and Anita Marguerie, and Wendy K Alderton, and Robin J M Franklin
March 2018, Regeneration (Oxford, England),
Copied contents to your clipboard!