Oestrogen modulates human macrophage apoptosis via differential signalling through oestrogen receptor-alpha and beta. 2009

Manikandan Subramanian, and Chandrima Shaha
Cell Death and Differentiation Research Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.

Human macrophages express oestrogen receptors and are therefore competent to respond to the hormone present in their microenvironment, which is implicated in sexual dimorphism observed in several immune and autoimmune phenomena. An earlier study from this laboratory demonstrated 17beta-oestradiol (E2) induced apoptosis in macrophages derived from human peripheral blood monocytes and THP-1 acute monocytic leukaemia cell line when Bcl-2 was down-regulated; however, the involvement of E2 receptor subtypes in the modulation of death pathways in these cells remain unknown. Using macrophages derived from THP-1 human acute monocytic leukaemia cells as a model, we demonstrate that plasma membrane associated oestrogen receptor (ER) -alpha participate in E2 induced Bcl-2 increase, through activation of the mitogen activated protein kinase (MAPK) pathway whereas cytosolic ER-beta transmits signals for the pro-apoptotic event of Bax translocation. The mechanistic basis of Bax translocation comprised of ER-beta mediated increase in intracellular pH, facilitated by activation of the Na(+)-H(+) exchanger. Intracellular alkalinization accompanied by concomitant Bcl-2 increase and Bax migration does not cause cellular apoptosis; however, siRNA mediated down-regulation of ER-alpha during E2 exposure leads to inhibition of Bcl-2 increase and consequently apoptosis due to the unopposed action of mitochondrial Bax. In summary, this study underscores the importance of integrative signalling modality from multiple oestrogen receptor pools in modulating oestrogen effects on human monocyte-derived macrophage apoptotic signalling pathway, which opens new vistas to explore the use of selective oestrogen receptor modulators in apoptosis-based therapies.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D047628 Estrogen Receptor alpha One of the ESTROGEN RECEPTORS that has marked affinity for ESTRADIOL. Its expression and function differs from, and in some ways opposes, ESTROGEN RECEPTOR BETA. ERalpha,Estradiol Receptor alpha,Estrogen Receptor 1,Estrogen Receptors alpha,Receptor alpha, Estrogen,Receptor alpha, Estradiol,alpha, Estradiol Receptor
D047629 Estrogen Receptor beta One of the ESTROGEN RECEPTORS that has greater affinity for ISOFLAVONES than ESTROGEN RECEPTOR ALPHA does. There is great sequence homology with ER alpha in the DNA-binding domain but not in the ligand binding and hinge domains. ERbeta,ERbetacx,Estrogen Receptor 2,Estrogen Receptors beta,Receptor beta, Estrogen

Related Publications

Manikandan Subramanian, and Chandrima Shaha
September 2006, British journal of cancer,
Manikandan Subramanian, and Chandrima Shaha
February 2016, Reproduction in domestic animals = Zuchthygiene,
Manikandan Subramanian, and Chandrima Shaha
September 2002, The Journal of endocrinology,
Manikandan Subramanian, and Chandrima Shaha
January 2007, Acta physiologica (Oxford, England),
Manikandan Subramanian, and Chandrima Shaha
November 2009, The Journal of physiology,
Manikandan Subramanian, and Chandrima Shaha
September 2007, Chinese medical journal,
Manikandan Subramanian, and Chandrima Shaha
October 2007, Clinical endocrinology,
Manikandan Subramanian, and Chandrima Shaha
February 2001, Molecular human reproduction,
Manikandan Subramanian, and Chandrima Shaha
March 1995, Biochemical and biophysical research communications,
Copied contents to your clipboard!