Promoters with the octamer DNA motif (ATGCAAAT) can be ubiquitous or cell type-specific depending on binding affinity of the octamer site and Oct-factor concentration. 1991

I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
Institut für Molekularbiologie II, Universität Zürich, Switzerland.

Immunoglobulin (Ig) gene promoters contain the octamer sequence motif ATGCAAAT which is recognized by cellular transcription factors (Oct factors). Besides the ubiquitous Oct-1 factor, there is also a group of related factors (Oct-2 factors) encoded by a separate gene. The Oct-2 gene is regulated in a cell-type specific manner, and the protein is present in large amounts in B lymphocytes. We have previously shown that simple composite promoters of an octamer/TATA box type are poorly active in non-B cells but are strongly responsive to ectopic expression of Oct-2A factor, a major representative of the lymphocyte Oct-2 factors. In the present study we have tested the activity of a number of composite promoters and natural Ig promoters, and their response to Oct-1 and Oct-2 factors. Unexpectedly, we find that octamer/TATA promoters with a high affinity octamer site direct ubiquitous expression. By contrast, promoter constructions that behave in a B cell-specific manner tend to have a weak octamer binding site. These promoters are responsive to ectopic expression of additional Oct-factor, irrespective of whether it is Oct-1 or Oct-2. Using natural Ig promoters rather than composite promoters, we find that an IgH promoter is well transcribed in non-B cells via the ubiquitous Oct-1 factor, while Ig kappa and Ig lambda light chain promoters require additional Oct factor for maximal expression. It seems therefore likely that during B cell differentiation, Ig heavy chain promoters can be activated by Oct-1, before the appearance of Oct-2 factors. Oct-2 factors then would serve to boost the expression from Ig light chain promoters, which are known to be activated only after successful heavy chain gene rearrangement.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
December 1992, FEBS letters,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
July 1991, The Biochemical journal,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
September 1990, Nucleic acids research,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
July 1995, Biochemical and biophysical research communications,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
October 1987, The EMBO journal,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
November 1992, Cancer research,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
November 1993, European journal of biochemistry,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
November 1987, Cell,
I Kemler, and E Bucher, and K Seipel, and M M Müller-Immerglück, and W Schaffner
December 1988, Genes & development,
Copied contents to your clipboard!