Sequence and expression of potato U2 snRNA genes. 1991

R Waugh, and G Clark, and P Vaux, and J W Brown
Department of Cellular and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee, UK.

Plant UsnRNA multigene families show a high degree of sequence variation among individual gene members. The potato U2snRNA gene family consists of between twenty-five and forty genes. Four potato U2snRNA gene variants have been isolated. Despite the sequence variation in coding and flanking regions, all maintain the conserved U2snRNA secondary structure and all contain the plant UsnRNA promoter elements: the upstream sequence element (USE) and TATA-like box in the -70 and -30 regions respectively. In RNase A/T1 protection analyses, one of the genes, PotU2-22, protected high levels of full length U2snRNA transcripts in potato leaf, stem, root and tuber RNA. Thus, PotU2-22 or genes with identical coding regions, are highly expressed in these potato organs and therefore represent a major subset of functional U2snRNA genes. Similar expression levels of the PotU2-22 sequence variant were also found in four genetically different potato cultivars and also in tobacco, a species closely related to potato, suggesting conservation of the coding regions of expressed U2snRNA genes. A second gene, PotU2-4, protected very low levels of full length transcripts while a third gene, PotU2-11, was not expressed in the potato organs analysed. The relative expression levels of the gene variants may reflect individual gene differences in, for example, the USE and TATA regulatory elements, or variations in gene copy number.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011198 Solanum tuberosum A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts. Potatoes,Potato,Solanum tuberosums,tuberosum, Solanum,tuberosums, Solanum
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012342 RNA, Small Nuclear Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors. Low Molecular Weight Nuclear RNA,Small Nuclear RNA,snRNA,Chromatin-Associated RNA,Small Molecular Weight RNA,Chromatin Associated RNA,RNA, Chromatin-Associated
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

R Waugh, and G Clark, and P Vaux, and J W Brown
September 1990, Nucleic acids research,
R Waugh, and G Clark, and P Vaux, and J W Brown
December 1989, Nucleic acids research,
R Waugh, and G Clark, and P Vaux, and J W Brown
August 2001, The Journal of cell biology,
R Waugh, and G Clark, and P Vaux, and J W Brown
March 1988, The EMBO journal,
R Waugh, and G Clark, and P Vaux, and J W Brown
March 2010, Biochemical and biophysical research communications,
R Waugh, and G Clark, and P Vaux, and J W Brown
November 1991, Developmental biology,
R Waugh, and G Clark, and P Vaux, and J W Brown
July 1988, Nucleic acids research,
R Waugh, and G Clark, and P Vaux, and J W Brown
November 1981, Nucleic acids research,
R Waugh, and G Clark, and P Vaux, and J W Brown
May 1998, Molecular biology of the cell,
R Waugh, and G Clark, and P Vaux, and J W Brown
November 1983, FEBS letters,
Copied contents to your clipboard!