Decreased GABAA and GABAB receptor functional activity in cannabinoid CB1 receptor knockout mice. 2011

Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
Departamento de Farmacología, Facultad de Medicina, Universidad del País Vasco, UPV/EHU, Leioa, Bizkaia, Spain.

The interaction between brain GABAergic and endocannabinoid systems was evaluated by examining the quantitative and functional status of GABAergic receptors in cannabinoid CB(1) receptor knockout (CB(1)(-/-)) mice. To this aim, GABA(A) ([(3)H]-Muscimol binding assay), GABA(B) (baclofen-stimulated [(35)S]-GTPγS binding assay), GABA(A)α(1), GABA(A)α(2) and GABA(A)γ(2) receptors gene expression (real-time reverse transcriptase polymerase chain reaction [PCR]) were carried out in CB(1)(-/-) and wild-type mice (CB(1)(+/+)). [(3)H]-Muscimol binding assays revealed significant reduction in the density of GABA(A) receptors in CA2 (30%) and DG (28%) of the hippocampus, thalamus (40%), cingulate (28%) and motor cortex (35%) of CB(1)(-/-) mice. Functional activity of metabotropic GABA(B) receptors was measured by evaluating the ability of GABA(B) agonist baclofen to stimulate [(35)S]-GTPγS binding. The results showed significant reduced [(35)S]-GTPγS binding in CA1 (61%), CA3 (51%) and DG (60%) of CB(1)(-/-) mice compared with CB(1)(+/+) mice. Real-time reverse transcriptase PCR was carried out for evaluating gene expression of α(1), α(2) and γ(2) subunits of GABA(A) receptor in the amygdala. The results showed significant reduced GABA(A)α(1) (50%) and GABA(A)α(2) (40%) receptor subunits gene expression in the amygdala of CB(1)(-/-) mice. No difference was observed in GABA(A)γ(2) receptor subunit gene expression. This study provides strong evidence of the involvement of CB(1) receptors in the control of GABAergic responses mediated by GABA(A) and GABA(B) receptors, and suggests a possible role of the endocannabinoid system in the regulation of anxiety-related disorders.

UI MeSH Term Description Entries
D008297 Male Males
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen
D016244 Guanosine 5'-O-(3-Thiotriphosphate) Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes. GTP gamma S,Guanosine 5'-(gamma-S)Triphosphate,gamma-Thio-GTP,GTPgammaS,Guanosine 5'-(3-O-Thio)Triphosphate,gamma S, GTP,gamma Thio GTP
D043884 Receptor, Cannabinoid, CB1 A subclass of cannabinoid receptor found primarily on central and peripheral NEURONS where it may play a role modulating NEUROTRANSMITTER release. Cannabinoid Receptor CB1,CB1 Receptor,Receptor CB1, Cannabinoid,Receptor, CB1
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D058785 GABA-A Receptor Agonists Endogenous compounds and drugs that bind to and activate GABA-A RECEPTORS. GABA-A Agonists,GABA-A Receptor Agonist,Agonist, GABA-A Receptor,Agonists, GABA-A,Agonists, GABA-A Receptor,GABA A Agonists,GABA A Receptor Agonist,GABA A Receptor Agonists,Receptor Agonist, GABA-A,Receptor Agonists, GABA-A

Related Publications

Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
August 2004, Molecular pharmacology,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
May 1999, Proceedings of the National Academy of Sciences of the United States of America,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
July 2002, Brain research,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
November 2011, Toxicology and applied pharmacology,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
October 2005, The European journal of neuroscience,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
January 2005, Handbook of experimental pharmacology,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
May 1999, Proceedings of the National Academy of Sciences of the United States of America,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
December 2003, Neuroendocrinology,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
February 2003, European journal of pharmacology,
Leyre Urigüen, and María S García-Gutiérrez, and Jorge Manzanares
January 2005, Alcohol and alcoholism (Oxford, Oxfordshire),
Copied contents to your clipboard!