Negative regulation of the major histocompatibility complex class I promoter in embryonal carcinoma cells. 1991

J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.

Transcription of major histocompatibility complex (MHC) class I genes is negatively regulated in undifferentiated F9 mouse embryonal carcinoma cells via the conserved upstream regulatory region. This region contains constitutive enhancers and an inducible enhancer, the interferon consensus sequence (ICS), that is responsible for interferon-induced transcription. A series of mutations in the ICS, but not in the enhancer elements, resulted in an increase in expression of the MHC class I promoter in F9 cells. However, these ICS mutants did not increase promoter activity in F9 cells differentiated after retinoic acid treatment. Results of mobility-shift DNA-binding assays and methylation interference experiments showed that undifferentiated F9 cells contained a factor(s) that bound to a sequence within the 5' and central part of the ICS. This binding site, termed the MHC negative regulatory element (NRE), coincided with the site of mutations that increased promoter activity in F9 cells and was distinct from the element to which interferon-response factors bind. The factor(s) that binds to the MHC NRE was not detected in differentiated F9 cells treated with retinoic acid or in other cells expressing MHC class I genes. Finally, introduction of concatenated, double-stranded NRE oligomers, but not oligomers of unrelated sequences, into F9 cells abolished negative regulation of the MHC class I promoter activity, providing evidence that the NRE binding factor is responsible for repression of the MHC class I genes in F9 cells.

UI MeSH Term Description Entries
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
December 1986, Proceedings of the National Academy of Sciences of the United States of America,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
July 1989, Proceedings of the National Academy of Sciences of the United States of America,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
August 2010, Biology of reproduction,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
January 1989, The Year in immunology,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
November 1993, Immunology,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
May 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
December 2006, Immunological reviews,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
November 1996, European journal of immunology,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
January 1990, Journal of reproduction and fertility. Supplement,
J R Flanagan, and M Murata, and P A Burke, and Y Shirayoshi, and E Appella, and P A Sharp, and K Ozato
January 2011, Frontiers in immunology,
Copied contents to your clipboard!