Protein kinase D1 is essential for the proinflammatory response induced by hypersensitivity pneumonitis-causing thermophilic actinomycetes Saccharopolyspora rectivirgula. 2010

Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.

Hypersensitivity pneumonitis is an interstitial lung disease that results from repeated pulmonary exposure to various organic Ags, including Saccharopolyspora rectivirgula, the causative agent of farmer's lung disease. Although the contributions of proinflammatory mediators to the disease pathogenesis are relatively well documented, the mechanism(s) involved in the initiation of proinflammatory responses against the causative microorganisms and the contribution of signaling molecules involved in the host immune defense have not been fully elucidated. In the current study, we found that S. rectivirgula induces the activation of protein kinase D (PKD)1 in lung cells in vitro and in vivo. Activation of PKD1 by S. rectivirgula was dependent on MyD88. Inhibition of PKD by pharmacological PKD inhibitor Gö6976 and silencing of PKD1 expression by small interfering RNA revealed that PKD1 is indispensable for S. rectivirgula-mediated activation of MAPKs and NF-kappaB and the expression of various proinflammatory cytokines and chemokines. In addition, compared with controls, mice pretreated with Gö6976 showed significantly suppressed alveolitis and neutrophil influx in bronchial alveolar lavage fluid and interstitial lung tissue, as well as substantially decreased myeloperoxidase activity in the lung after pulmonary exposure to S. rectivirgula. These results demonstrate that PKD1 is essential for S. rectivirgula-mediated proinflammatory immune responses and neutrophil influx in the lung. Our findings also imply the possibility that PKD1 is one of the critical factors that play a regulatory role in the development of hypersensitivity pneumonitis caused by microbial Ags and that inhibition of PKD1 activation could be an effective way to control microbial Ag-induced hypersensitivity pneumonitis.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005203 Farmer's Lung A form of alveolitis or pneumonitis due to an acquired hypersensitivity to inhaled antigens associated with farm environment. Antigens in the farm dust are commonly from bacteria actinomycetes (SACCHAROPOLYSPORA and THERMOACTINOMYCES), fungi, and animal proteins in the soil, straw, crops, pelts, serum, and excreta. Mushroom Worker's Lung,Farmer Lung,Farmer's Lungs,Farmers Lung,Mushroom Worker Lung,Mushroom Worker's Lungs,Mushroom Workers Lung
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D016930 Saccharopolyspora A genus of gram-positive bacteria whose spores are round to oval and covered by a sheath. Saccharopolyspora erythraea,Streptomyces erythraea
D048049 Extracellular Signal-Regulated MAP Kinases A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS. ERK MAP Kinase,ERK MAP Kinases,Extracellular Signal-Regulated Kinase,Extracellular Signal-Regulated Kinases,Extracellular Signal-Regulated MAP Kinase,MAP Kinases, Extracellular Signal-Regulated,Extracellular Signal Regulated Kinase,Extracellular Signal Regulated Kinases,Extracellular Signal Regulated MAP Kinase,Extracellular Signal Regulated MAP Kinases,Kinase, ERK MAP,Kinase, Extracellular Signal-Regulated,Kinases, Extracellular Signal-Regulated,MAP Kinase, ERK,MAP Kinases, Extracellular Signal Regulated,Signal-Regulated Kinase, Extracellular

Related Publications

Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
March 2022, ImmunoHorizons,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
March 2016, American journal of physiology. Lung cellular and molecular physiology,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
January 1994, Ryoikibetsu shokogun shirizu,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
September 2022, American journal of physiology. Lung cellular and molecular physiology,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
July 1975, Journal of clinical microbiology,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
May 1976, The Journal of allergy and clinical immunology,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
March 1977, The Journal of laboratory and clinical medicine,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
May 2014, Proceedings of the National Academy of Sciences of the United States of America,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
November 2013, Endocrinology,
Young-In Kim, and Jeoung-Eun Park, and David D Brand, and Elizabeth A Fitzpatrick, and Ae-Kyung Yi
May 1990, BMJ (Clinical research ed.),
Copied contents to your clipboard!