Identification of two forms of the RNA polymerase I transcription factor UBF. 1991

D J O'Mahony, and L I Rothblum
Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, PA 17822.

The structure of the rat homologue of the RNA polymerase I transcription factor UBF was investigated. The sequence of the protein was deduced from the sequence of overlapping cDNAs isolated from a cDNA library and from clones of the products generated by the polymerase chain reaction from random-primed, first-strand cDNA. The sequences of these clones indicated that there were two mRNAs for UBF and that the encoded proteins were similar but not identical. One form of rat UBF was essentially identical to human UBF. The second class of UBF mRNA contained an in-frame "deletion" in the coding region that results in the deletion of 37 amino acids from the predicted protein sequence. This deletion reduces the predicted molecular size of the encoded form of UBF by approximately 4400 from 89.4 kDa to 85 kDa and significantly alters the structure of one of the four HMG-1 homology regions (HMG box-2) in that form of UBF. Evidence for the existence of two mRNAs in rat cells was confirmed by a probe protection assay, and we provide evidence that other vertebrate cells contain these same two forms of UBF mRNA. These results are consistent with the observation that UBF purified from four different vertebrates migrates as two bands upon SDS/PAGE. It has been hypothesized that the HMG motifs are the DNA-binding domains of UBF. Altering one of these "boxes," as in the second form of UBF, may alter the functional characteristics of the transcription factor. Thus, the existence of different forms of UBF may have important ramifications for transcription by RNA polymerase I.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012318 RNA Polymerase I A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. DNA-Dependent RNA Polymerase I,RNA Polymerase A,DNA Dependent RNA Polymerase I,Polymerase A, RNA,Polymerase I, RNA

Related Publications

D J O'Mahony, and L I Rothblum
March 1995, The Journal of biological chemistry,
D J O'Mahony, and L I Rothblum
July 2006, The EMBO journal,
D J O'Mahony, and L I Rothblum
May 1999, Proceedings of the National Academy of Sciences of the United States of America,
D J O'Mahony, and L I Rothblum
December 1993, The Journal of biological chemistry,
Copied contents to your clipboard!