Effects of magnetic resonance imaging on eye development in the C57BL/6J mouse. 1991

D A Tyndall, and K K Sulik
Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill 27599-7450.

An investigation was undertaken to ascertain the potential teratogenicity of magnetic resonance imaging (MRI) fields. The C57BL/6J mouse was chosen as the experimental model with eye malformations (microphthalmia and morphologic anomalies) designated as the biological end point. This mouse strain is genetically predisposed to this type of malformation as a 10% spontaneous incidence occurs. Dams in groups of 15 were subjected to MRI imaging conditions on gestational day (Gd) 7 for 36 minutes to a spin-echo T-2-weighted scan by using a 1.5 Tesla magnetic field and a radiofrequency (RF) field of 64 MHz. One group was exposed at the magnetic isocenter while another was exposed at the entrance to the magnet lumen. There was also a sham control group. The dams were sacrificed at Gd 14. Assessment of eye abnormality was determined by, 1) a veterinary ophthalmologist, 2) a computer-based method comparing eye areas, and 3) a methodology combining both the above subjective and quantitative methods. MRI fields were found to produce malformation rates (15-37%) higher than controls (2-19% P less than or equal to .05, Kruskal-Wallis Test) for both isocenter and lumen entrance groups. The malformation rates and degree of statistical significance varied somewhat with analytical methodology and the unit of measure (right eye, left eye, or fetus). The results suggest for the first time the potential of MRI fields to produce developmental malformations in an animal model utilizing clinically realistic exposure conditions. (However, the reader is remained that the mouse strain utilized in this investigation was genetically prone to malformations).

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004574 Electromagnetic Fields Fields representing the joint interplay of electric and magnetic forces. Electromagnetic Field,Field, Electromagnetic,Fields, Electromagnetic
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D005124 Eye Abnormalities Congenital absence of or defects in structures of the eye; may also be hereditary. Abnormalities, Eye,Abnormality, Eye,Eye Abnormality
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D A Tyndall, and K K Sulik
March 1992, Annals of the New York Academy of Sciences,
D A Tyndall, and K K Sulik
September 2012, NeuroImage,
D A Tyndall, and K K Sulik
January 2010, Investigative ophthalmology & visual science,
D A Tyndall, and K K Sulik
January 1968, Folia biologica,
D A Tyndall, and K K Sulik
January 1990, Magnetic resonance imaging,
D A Tyndall, and K K Sulik
June 2000, NeuroImage,
D A Tyndall, and K K Sulik
August 2014, Respiratory physiology & neurobiology,
Copied contents to your clipboard!