Neonatal bladder inflammation alters activity of adult rat spinal visceral nociceptive neurons. 2010

T J Ness, and A Randich
Department of Anesthesiology, University of Alabama at Birmingham, 1530 Third Avenue South, BMR2-270, Birmingham, AL 35294-0006, USA. tjness@uab.edu

OBJECTIVE This investigation examined the effect of inflammation produced by intravesical zymosan during the neonatal period on spinal dorsal horn neuronal responses to urinary bladder distension (UBD) as adults. METHODS Female rat pups (P14-P16) were treated with intravesical zymosan or with anesthesia-only. These groups of rats were subdivided forming four groups: half received intravesical zymosan as adults and half received anesthesia-only. One day later, rats were anesthetized, the spinal cord was transected at a cervical level and extracellular single-unit recordings of L6-S1 dorsal horn neurons were obtained. Neurons were classified as Type I--inhibited by heterotopic noxious conditioning stimuli (HNCS) or as Type II--not inhibited by HNCS--and were characterized for Spontaneous Activity and responses to graded UBD (20-60 mm Hg). RESULTS 227 spinal dorsal horn neurons excited by UBD were characterized. In rats treated as neonates with anesthesia-only, Type II neurons demonstrated increased spontaneous and UBD-evoked activity following adult intravesical zymosan treatment whereas Type I neurons demonstrated decreased spontaneous and UBD-evoked activity relative to controls. In rats treated as neonates with intravesical zymosan, the spontaneous and UBD-evoked activity of both Type I and Type II neurons increased following adult intravesical zymosan treatment relative to controls. CONCLUSIONS Neonatal bladder inflammation alters subsequent effects of acute bladder inflammation on spinal dorsal horn neurons excited by UBD such that overall there is greater sensory neuron activation. This may explain the visceral hypersensitivity noted in this model system and suggest that impaired inhibitory systems may be responsible.

UI MeSH Term Description Entries
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D003556 Cystitis Inflammation of the URINARY BLADDER, either from bacterial or non-bacterial causes. Cystitis is usually associated with painful urination (dysuria), increased frequency, urgency, and suprapubic pain. Cystitides
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D015054 Zymosan Zymosan A
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D020671 Posterior Horn Cells Neurons in the SPINAL CORD DORSAL HORN whose cell bodies and processes are confined entirely to the CENTRAL NERVOUS SYSTEM. They receive collateral or direct terminations of dorsal root fibers. They send their axons either directly to ANTERIOR HORN CELLS or to the WHITE MATTER ascending and descending longitudinal fibers. Dorsal Horn Cells,Dorsal Horn Neurons,Neurons, Dorsal Horn,Neurons, Posterior Horn,Cell, Dorsal Horn,Cell, Posterior Horn,Cells, Dorsal Horn,Cells, Posterior Horn,Dorsal Horn Cell,Dorsal Horn Neuron,Neuron, Dorsal Horn,Neuron, Posterior Horn,Posterior Horn Cell,Posterior Horn Neuron,Posterior Horn Neurons

Related Publications

T J Ness, and A Randich
September 1999, Anesthesia and analgesia,
T J Ness, and A Randich
April 1998, European journal of pharmacology,
Copied contents to your clipboard!