Identification and characterization of nuclear location signal-binding proteins in nuclear envelopes. 1991

S Pandey, and V K Parnaik
Centre for Cellular and Molecular Biology, Hyderabad, India.

A radioiodinated, photoactivable synthetic nonapeptide corresponding to the nuclear location signal (NLS) of SV40 large T antigen has been used in photolabelling reactions with purified mouse liver nuclei, nuclear envelopes and other cellular fractions, to identify specific NLS-binding proteins which may be involved in selective transport of karyophilic proteins. SDS-polyacrylamide gel analysis of photolabelled products demonstrates that a 60 kDa nuclear protein and four nuclear envelope proteins (67, 60, 53 and 47 kDa) bind specifically to the native NLS and not to a mutant NLS or unrelated sequences. This binding shows saturation kinetics, with highest affinity of the NLS for the 60 and 67 kDa proteins. The nuclear 60 kDa NLS-binding protein is identical to the nuclear envelope 60 kDa NLS-binding protein by two-dimensional gel analysis of labelled proteins. Biochemical fractionation of labelled nuclear envelopes suggests that the 53 and 47 kDa proteins are peripheral membrane proteins whereas the 67 and 60 kDa proteins can be localized to the pore complex. The NLS also binds to solubilized 67, 60, 53 and 47 kDa proteins but with decreased affinity. Our results suggest that one of the early steps in selective nuclear transport of proteins may be the recognition of the NLS by the 60 kDa and/or 67 kDa binding proteins present in the nuclear pore complex.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009685 Nuclear Envelope The membrane system of the CELL NUCLEUS that surrounds the nucleoplasm. It consists of two concentric membranes separated by the perinuclear space. The structures of the envelope where it opens to the cytoplasm are called the nuclear pores (NUCLEAR PORE). Nuclear Membrane,Envelope, Nuclear,Envelopes, Nuclear,Membrane, Nuclear,Membranes, Nuclear,Nuclear Envelopes,Nuclear Membranes
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus

Related Publications

S Pandey, and V K Parnaik
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
S Pandey, and V K Parnaik
September 1990, Proceedings of the National Academy of Sciences of the United States of America,
S Pandey, and V K Parnaik
September 1988, Archives of biochemistry and biophysics,
S Pandey, and V K Parnaik
October 1985, Proceedings of the Royal Society of London. Series B, Biological sciences,
S Pandey, and V K Parnaik
April 1990, The Journal of biological chemistry,
Copied contents to your clipboard!