Dissociated effects of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide-1 on beta-cell secretion and insulin clearance in mice. 2010

Giovanni Pacini, and Karl Thomaseth, and Bo Ahrén
Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy. giovanni.pacini@isib.cnr.it

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) potently augment insulin response to glucose. It is less known what their effects are insulin clearance, which also contributes to peripheral hyperinsulinemia observed after administration of incretins together with glucose. The aims of this study were the quantification of C-peptide secretion and the evaluation of insulin clearance after administration of GIP with glucose. This allows the assessment of GIP's effects on hyperinsulinemia. In addition, GIP's effects were compared with those of GLP-1. Anesthetized female NMRI mice were injected intravenously with glucose alone (1 g/kg, n = 35) or glucose together with GIP (50 microg/kg, n = 12). Samples were taken through the following 50 minutes, and C-peptide and insulin concentrations were used to reconstruct C-peptide secretion rate and insulin clearance. In a previous study, GLP-1 (10 microg/kg) was used in 12 mice; and we used those GLP-1 results to compare GIP effects with those of GLP-1. C-peptide secretion rate peaked at 1 minute after glucose injection, and the immediate part of the insulin-releasing process was markedly augmented by both incretin hormones (1-minute suprabasal increment secretory rate was 20 +/- 2 pmol/min for GIP and 28 +/- 2 pmol/min for GLP-1, vs only 9 +/- 1 pmol/min for glucose alone; P < .001). Until 10 minutes after administration, C-peptide secretion remained higher with incretins (P < .0001), whereas starting from 20 minutes, the 3 patterns were undistinguishable (P > .2). Insulin clearance, previously shown to be abridged by 46% with GLP-1, was reduced only by a nonsignificant (P = .27) 21% with GIP. This study thus shows that the 2 incretins markedly augment glucose-stimulated insulin secretion in mice by a preferential action on the immediate response to glucose of insulin secretion. However, the action of GIP is less effective than that of GLP-1. Insulin clearance with GIP is not significantly reduced. We conclude that GIP is less potent than GLP-1 in inducing glucose-stimulated hyperinsulinemia in the mouse.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide
D005260 Female Females
D005749 Gastric Inhibitory Polypeptide A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion. Glucose-Dependent Insulinotropic Peptide,Gastric-Inhibitory Polypeptide,Glucose Dependent Insulinotropic Peptide,Glucose-Dependent Insulin-Releasing Peptide,Glucose Dependent Insulin Releasing Peptide,Inhibitory Polypeptide, Gastric,Insulin-Releasing Peptide, Glucose-Dependent,Insulinotropic Peptide, Glucose-Dependent,Peptide, Glucose-Dependent Insulin-Releasing,Peptide, Glucose-Dependent Insulinotropic,Polypeptide, Gastric Inhibitory,Polypeptide, Gastric-Inhibitory
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050417 Insulin-Secreting Cells A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN. Pancreatic beta Cells,beta Cells, Pancreatic,Pancreatic B Cells,B Cell, Pancreatic,B Cells, Pancreatic,Cell, Insulin-Secreting,Cells, Insulin-Secreting,Insulin Secreting Cells,Insulin-Secreting Cell,Pancreatic B Cell,Pancreatic beta Cell,beta Cell, Pancreatic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Giovanni Pacini, and Karl Thomaseth, and Bo Ahrén
April 1995, The American journal of physiology,
Giovanni Pacini, and Karl Thomaseth, and Bo Ahrén
April 2016, Journal of diabetes investigation,
Giovanni Pacini, and Karl Thomaseth, and Bo Ahrén
May 2018, American journal of physiology. Regulatory, integrative and comparative physiology,
Giovanni Pacini, and Karl Thomaseth, and Bo Ahrén
May 2009, The Journal of biological chemistry,
Giovanni Pacini, and Karl Thomaseth, and Bo Ahrén
April 2016, Journal of diabetes investigation,
Giovanni Pacini, and Karl Thomaseth, and Bo Ahrén
April 2016, Danish medical journal,
Copied contents to your clipboard!